TASK FORCE INDEPENDENT CALIFORNIA IN ORG CALIFORNIA S	BEFORE THE ON NEUROSCIENCE AND MEDICINE OF THE CITIZENS' OVERSIGHT COMMITTEE TO THE STITUTE FOR REGENERATIVE MEDICINE GANIZED PURSUANT TO THE STEM CELL RESEARCH AND CURES ACT
	REGULAR MEETING
LOCATION:	VIA ZOOM
DATE:	APRIL 24, 2023 12 p.m.
REPORTER:	BETH C. DRAIN, CA CSR CSR. NO. 7152
FILE NO.:	2023-14

INDEX

ITEM DESCRIPTION	PAGE NO.
OPEN SESSION	
1. CALL TO ORDER	3
2. ROLL CALL	3
DISCUSSION ITEMS	
3. GENERAL DISCUSSION AND REVIEW	5
4. EXTERNAL EXPERT ON STEM CELLS AND PSYCHIATRIC DISEASE MODELING: THOMAS C. SUDHOF, M.D.	21
5. EXTERNAL EXPERT ON STEM CELLS AND PSYCHIATRIC DISEASE MODELING: KRISTEN BRENNAND, PH.D.	42
6. GENERAL DISCUSSION ABOUT ELEMENTS OF A CIRM NEUROPSYCHIATRIC PROGRAM	71
7. PUBLIC COMMENT	89
8. ADJOURNMENT	93

1	APRIL 24, 2023; 12 P.M.
2	
3	CHAIRMAN GOLDSTEIN: OKAY. GOOD
4	AFTERNOON, EVERYBODY, AND WELCOME TO THE THIRD
5	MEETING OF THE CIRM TASK FORCE ON NEUROSCIENCE AND
6	NEUROMEDICINE. AND WHAT I WANT TO DO IS JUST TAKE A
7	COUPLE MINUTES TO REVIEW WHERE WE'VE BEEN THUS FAR
8	IN OUR MEETINGS, AND THAT WILL FRAME THE TOPICS THAT
9	TODAY'S SPEAKERS WILL DISCUSS WITH US.
10	SO THE FIRST MEETING THAT WE DID BACK IN
11	FEBRUARY
12	MS. DEQUINA-VILLABLANCA: LARRY, SHOULD I
13	DO ROLL CALL REAL QUICK?
14	CHAIRMAN GOLDSTEIN: OH, YES. I FORGOT
15	ABOUT ROLL CALL. THANK YOU, MARIANNE.
16	MS. DEQUINA-VILLABLANCA: OKAY. HERE WE
17	GO
18	CHAIRMAN GOLDSTEIN: I'M NOT MUCH FOR
19	FORMALITIES, AS YOU CAN SEE.
20	MS. DEQUINA-VILLABLANCA: NO WORRIES.
21	LEONDRA CLARK-HARVEY. MARIA BONNEVILLE.
22	MS. BONNEVILLE: PRESENT.
23	MS. DEQUINA-VILLABLANCA: MARK
24	FISCHER-COLBRIE.
25	DR. FISCHER-COLBRIE: HERE.
	3

1	MS. DEQUINA-VILLABLANCA: FRED FISHER.
2	DR. FISHER: YEP.
3	MS. DEQUINA-VILLABLANCA: JUDY GASSON. I
4	SAW JUDY. SHE IS ON MUTE. JUDY, YOU'RE ON MUTE.
5	ALL RIGHT. I'LL GO BACK.
6	LARRY GOLDSTEIN.
7	CHAIRMAN GOLDSTEIN: HERE.
8	MS. DEQUINA-VILLABLANCA: DAVID HIGGINS.
9	DR. HIGGINS: HERE.
10	MS. DEQUINA-VILLABLANCA: VITO IMBASCIANI.
11	DR. IMBASCIANI: PRESENT.
12	MS. DEQUINA-VILLABLANCA: STEVE
13	JUELSGAARD.
14	MR. JUELSGAARD: PRESENT.
15	MS. DEQUINA-VILLABLANCA: PAT LEVITT.
16	DR. LEVITT: HERE.
17	MS. DEQUINA-VILLABLANCA: LAUREN
18	MILLER-ROGEN.
19	MS. MILLER-ROGEN: HERE.
20	MS. DEQUINA-VILLABLANCA: AL ROWLETT.
21	CHAIRMAN GOLDSTEIN: I THOUGHT I SAW AL A
22	COUPLE MINUTES AGO.
23	MS. DEQUINA-VILLABLANCA: HE WAS THERE.
24	YES, HE WAS. OKAY.
25	MARVIN SOUTHARD. AND SEEMS LIKE MARVIN IS
	4

1	ON, BUT I THINK HE WAS HAVING PROBLEMS WITH HIS
2	AUDIO. I DO SEE HIM.
3	ΚΕΙΤΗ ΥΑΜΑΜΟΤΟ.
4	DR. YAMAMOTO: HERE.
5	MS. DEQUINA-VILLABLANCA: LET ME CHECK
6	AGAIN. JUDY GASSON. AND THEN AL ROWLETT. ALL
7	RIGHT. WE CAN PROCEED.
8	CHAIRMAN GOLDSTEIN: PROCEED. THANK YOU.
9	SO WHAT I WANT TO DO IS JUST REVIEW WHERE
10	WE'VE BEEN TO SET UP TODAY'S SPEAKERS AND TOPICS.
11	SO THE FIRST MEETING OF THIS TASK FORCE DID A
12	PORTFOLIO REVIEW OF CIRM'S PRESENCE IN NEUROSCIENCE,
13	NEUROMEDICINE, AND ALSO WHAT THE BUSINESS LANDSCAPE
14	LOOKED LIKE. AND WHAT WE DISCOVERED WAS THAT, WHILE
15	CIRM HAS PRETTY GOOD EFFORTS GOING IN VARIOUS
16	NEURODEGENERATIVE DISORDERS USING STEM CELLS IN
17	DIFFERENT WAYS RANGING FROM MECHANISM DISCOVERY TO
18	CELL THERAPIES, WE HAD VIRTUALLY NO REPRESENTATION
19	IN NEUROPSYCHIATRIC DISORDERS EVEN THOUGH THERE ARE
20	GOOD ARGUMENTS TO BE MADE THAT STEM CELL TECHNOLOGY
21	WILL BE VERY HELPFUL FOR TACKLING THE PROBLEM OF
22	NEUROPSYCHIATRIC DISORDERS, THAT THESE ARE
23	RELATIVELY COMMON IN THE POPULATION WITH TREMENDOUS
24	DISEASE BURDEN ON SOCIETY.
25	AND SO WE HAD A DISCUSSION ABOUT THESE
	5
	5

1	PORTFOLIO ISSUES AND AGREED THAT THE FIRST PROBLEM
2	WE WOULD ATTACK IN OUR PLANNING, AND AS YOU WILL SEE
3	IN EARLY FUNDING INITIATIVE, WAS TO TACKLE THIS
4	PROBLEM WHILE WE CONTINUE OUR EDUCATION ABOUT WHAT'S
5	GOING ON IN DIFFERENT NEURO DISORDERS AND WHERE WE
6	MIGHT MAKE UNIQUE IMPACT. AND IN FACT, TODAY'S
7	SPEAKERS, YOU'LL SEE, HAVE BEEN USING STEM CELL
8	TECHNOLOGY TO TACKLE THE PROBLEM OF NEUROPSYCHIATRIC
9	DISORDERS. AND THEY'VE GOT SOME VERY INTERESTING
10	INSIGHTS AND PROJECTS TO TELL US ABOUT.
11	THE SECOND MEETING LAST MONTH FURTHER
12	POSITIONED HOW WE MIGHT THINK ABOUT THINGS BECAUSE
13	IT WAS A SET OF PRESENTATIONS BY TWO PSYCHIATRIC
14	GENETICISTS THAT REVEALED THAT IN MANY OF THESE
15	DISORDERS THERE ARE SIGNIFICANT IMPACT OF THE
16	GENETIC CONSTITUTION THAT INDIVIDUALS HAVE AND THAT,
17	LIKE MANY DISEASES IN HUMANS, WHAT ONE SEES IS THAT
18	THERE'S SORT OF A BREAKDOWN BETWEEN TWO MAJOR WAYS
19	THAT ONE SEES GENETIC EFFECTS ON NEUROPSYCHIATRIC
20	DISORDERS.
21	ONE IS BY THE ACTION OF RARE VARIANTS IN
22	THE POPULATION THAT HAVE STRONG IMPACT, AND THE
23	OTHER CLASS, IF YOU WILL, ARE MORE COMMON VARIANTS,
24	EACH OF SOMEWHAT WEAKER IMPACT, BUT TOGETHER CAN
25	LEAD TO THE DEVELOPMENT OR ENHANCE THE PROBABILITY

6

1	OF DEVELOPMENT OF NEUROPSYCHIATRIC DISEASE.
2	IN FACT, AS IT TURNS OUT, AT PUBLIC
3	COMMENT OF ONE OF OUR MEETINGS ABOUT TECHNOLOGIES
4	THAT CIRM SHOULD USE OR COULD USE TO TACKLE DISEASE,
5	TOM SUDHOF, ONE OF OUR SPEAKERS TODAY, SENT IN A
6	VERY THOUGHTFUL LETTER. AND I THOUGHT I WOULD JUST
7	READ THE LAST PARAGRAPH OF TOM'S LETTER. THERE WE
8	GO. IT'S SHORT, SO BEAR WITH ME.
9	AND WHAT TOM SAID WAS, "CALIFORNIA HAS
10	FANTASTIC NEUROSCIENCE AND GREAT NEUROSCIENTISTS.
11	BY ENGAGING THE CREATIVE ENERGY OF CALIFORNIA'S
12	NEUROSCIENTISTS TO DEVELOP AMBITIOUS RESEARCH
13	INITIATIVES FROM MOLECULES TO THE TREATMENT OF
14	PATIENTS, CIRM HAS THE OPPORTUNITY TO TRANSFORM THE
15	TREATMENT OF MENTAL ILLNESS AND REDUCE THE SUFFERING
16	OF MILLIONS OF CALIFORNIANS."
17	AND I PERSONALLY THINK THAT TOM IS CORRECT
18	IN THAT SENTIMENT. AND, OF COURSE, WE WILL BE
19	TALKING ABOUT THAT FURTHER TODAY AND IN FUTURE
20	MEETINGS.
21	SO WHAT I WANT TO DO NOW IS JUST GIVE YOU
22	A BRIEF INTRODUCTION TO THE TWO SPEAKERS TODAY.
23	THEY'RE BOTH WELL-KNOWN TO MANY OF YOU. ONE,
24	KRISTEN BRENNAND, WHO IS A FACULTY MEMBER AT YALE
25	USING STEM CELL TECHNOLOGIES TO TACKLE

7

NEUROPSYCHIATRIC DISORDERS. KRISTEN DID HER PH.D.
WORK WITH DOUG MELTON AT HARVARD WORKING ON
PANCREATIC DEVELOPMENT. SHE THEN DID A POST-DOC
WITH RUSTY GAGE, WHO MANY OF YOU KNOW, WHO'S DONE
REALLY TERRIFIC WORK IN NEUROPSYCHIATRIC DISORDERS
AND USING STEM CELLS TO TACKLE THEM. AND KRISTEN
TOOK A PART OF THAT PORTFOLIO WITH HER WHEN SHE
MOVED TO HER FACULTY POSITION WHERE SHE CURRENTLY IS
AT YALE.
TOM SUDHOF DID HIS PH.D. WORK IN GERMANY,
BUT THEN POST-DOC'D WITH MIKE BROWN AND JOE
GOLDSTEIN, NO ACTUAL RELATIVE OF MINE, BUT A
TERRIFIC GUY NONETHELESS. AND THAT'S WHERE TOM
REALLY BEGAN HIS INITIATIVES ON TRYING TO UNDERSTAND
THE MECHANICS AND BIOCHEMISTRY OF SYNAPTIC
TRANSMISSION. AND TO SAY THAT TOM IS A WORLD LEADER
IN THIS FIELD WOULD BE AMAZINGLY AN UNDERSTATEMENT.
WILL JUST NOTE THAT A FEW YEARS AGO HE WAS
AWARDED THE NOBEL PRIZE WITH RANDY SCHEKMAN AND JIM
ROTHMAN. AND TOM WAS RECOGNIZED IN PARTICULAR FOR
HIS WORK ON UNDERSTANDING HOW THE SYNAPSE WORKED AND
HOW NEURONS TALK TO EACH OTHER.
SO THE FINAL THING WE'LL DO IN TODAY'S
MEETING AFTER TOM AND KRISTEN'S PRESENTATIONS AND Q
AND A ABOUT THOSE PRESENTATIONS, WE'LL TACKLE TWO
8

1	THINGS. ONE IS I'LL REMIND YOU THAT WE ASKED AT THE
2	LAST MEETING ROSA CANET-AVILES TO BEGIN WORKING ON A
3	CONCEPT PLAN THAT WOULD COME TO THIS TASK FORCE
4	FORMALLY AT OUR NEXT MEETING IN MAY, THEN TO THE
5	SCIENCE SUBCOMMITTEE AT THE END OF MAY, AND THEN ON
6	TO THE FULL ICOC OR BOARD OF DIRECTORS AT OUR
7	MEETING AT THE END OF JUNE.
8	AND THE IDEA IS TO KICK-START OUR EFFORTS
9	IN THIS FIELD BY PROVIDING AWARDS TO
10	INTERDISCIPLINARY GROUPS OF INVESTIGATORS WHO ARE
11	TACKLING DIFFERENT NEUROPSYCHIATRIC DISORDERS. AND
12	YOU'LL SEE THE DETAILS AT OUR NEXT MEETING.
13	THE OTHER THING THAT ROSA HAS BEEN WORKING
14	ON AND THAT I'LL ASK HER TO PRESENT TO YOU TODAY IS
15	A SURVEY OF CALIFORNIA NEUROSCIENTISTS TO DEVELOP A
16	BETTER UNDERSTANDING OF WHAT DOES THE COMMUNITY OF
17	NEUROSCIENTISTS WORKING WITH STEM CELLS IN
18	CALIFORNIA LOOK LIKE AND WHERE ARE IMPORTANT THERE
19	OPPORTUNITIES AND WHAT DO THESE COMMUNITIES
20	THEMSELVES THINK OF THE BEST WAY TO MAKE PROGRESS ON
21	THESE DISORDERS USING STEM CELL TECHNOLOGY.
22	SO WITH NO FURTHER ADO, UNLESS SOMEBODY
23	HAS OTHER QUESTIONS OR COMMENTS THAT THEY WANT TO
24	MAKE, IF YOU DO PLEASE RAISE YOUR HAND, AND I DO NOT
25	SEE ANY RAISED HANDS HERE. AND SO FRED, YES,
	Q

PLEASE.

1

DR. FISHER: SO, NOW, YOU'VE LAID OUT WHAT 2 IS BASICALLY, INCLUDING THE NEXT MEETING, OR THE 3 FIRST FOUR MEETINGS OF THIS WORK GROUP ESSENTIALLY 4 BEING FOCUSED ON NEUROPSYCHIATRIC OPPORTUNITIES FOR 5 CIRM'S INVESTMENT. I'M WONDERING WHEN WE'RE GOING 6 TO GET TO THE OTHER PRIORITIES BECAUSE TO SPEND THE 7 FIRST FOUR MEETINGS ON NEUROPSYCHIATRIC SORT OF BEGS 8 9 THE OUESTION: IS THIS NOW THE PRIORITY OF THIS WORK GROUP, OR ARE WE ACTUALLY GOING TO BE LOOKING AT THE 10 ENTIRE LANDSCAPE OF WHAT THOSE NEURO INVESTMENTS ARE 11 OR ARE SUPPOSED TO BE? BECAUSE RIGHT NOW IT SEEMS 12 VERY HEAVILY WEIGHTED IN THE DIRECTION OF 13 14 NEUROPSYCHIATRIC. AND I'M TRYING TO CONTEXTUALIZE THAT INTO THE BIGGER UNIVERSE OF NEURO ISSUES. 15 16 CHAIRMAN GOLDSTEIN: YES. SO, FRED, 17 THAT'S REALLY A GREAT QUESTION. AND THANK YOU FOR BRINGING IT UP. IT'S AN IMPORTANT ISSUE. AND I 18 19 THINK THE WAY I WOULD LOOK AT IT, AT LEAST, AND I 20 THINK THIS IS THE SENTIMENT OF THE TASK FORCE, IS THAT WE HAVE TO START SOMEWHERE. NEUROPSYCHIATRIC 21 22 DISORDERS HAVE A TREMENDOUS BURDEN ON BOTH MAJORITY AND MINORITY POPULATIONS IN CALIFORNIA. AND AS 23 TODAY'S PRESENTATION AND THE NEXT AND PROBABLY LAST 24 25 ONE ON NEUROPSYCHIATRIC IS MY GUESS, ALTHOUGH

10

1	ULTIMATELY IT IS UP TO THIS TASK FORCE, THAT THERE
2	IS AN OPPORTUNITY TO MAKE A REAL IMPACT HERE AND
3	THAT WE'VE BEEN SUBSTANTIALLY UNDERREPRESENTED IN
4	THIS AREA.
5	I THINK FOLLOWING THE DEVELOPMENT OF SOME
6	INITIAL ATTACKS ON NEUROPSYCHIATRIC, WHICH IS WHAT
7	WE ARE DOING NOW, THEN I THINK I AGREE WITH THE
8	ISSUE YOU'RE BRINGING UP, WHICH IS WE HAVE TO LOOK
9	AT SOME OF THE OTHER DISORDERS AND ASK THE QUESTION
10	MORE FORMALLY, IF YOU WILL: ARE WE ADEQUATELY
11	REPRESENTED SCIENTIFICALLY AND MEDICALLY IN THE
12	STUDY OF THESE OTHER DISORDERS AND THE DEVELOPMENT
13	OF THERAPIES OF THESE OTHER DISORDERS? AND WHAT IS
14	THE BEST WAY TO MAKE A SIGNIFICANT IMPACT ON SOME OF
15	THESE OTHER DISORDERS AS PART OF THIS LONG-RANGE
16	PLANNING EFFORT?
17	SO I THINK THE ANSWER IS STAY TUNED. WE
18	ARE NOT ONLY GOING TO BE LOOKING AT NEUROPSYCHIATRIC
19	DISORDERS. WE ARE TAKING ADVANTAGE OF A UNIQUE AND,
20	I WOULD ARGUE, SOMEWHAT POWERFUL PORTION OF THE
21	LANDSCAPE WHERE I THINK WE ARE, AND IT HAS BEEN THE
22	SENTIMENT OF THE TASK FORCE, THAT WE ARE
23	COLLECTIVELY AWARE THAT WE ARE SUBSTANTIALLY
24	UNDERREPRESENTED IN THIS AREA, THAT IT'S WORTHY OF
25	THE BEGINNING OF AN ATTACK VIA FUNDING, WHICH IS ONE

11

1	OF THE MAJOR METHODS WE USE TO HAVE AN IMPACT ON
2	FIELDS, BUT WE WILL THEN COME BACK TO DISORDERS SUCH
3	AS ALS, YOUR PARTICULAR PRIMARY INTEREST,
4	ALZHEIMER'S DISEASE, PARKINSON'S, AND SOME OF THE
5	OTHER NEURODEGENERATIVES. AND WE'RE GOING TO HAVE
6	TO DEVELOP SOME IDEAS WHERE WE THINK ABOUT HOW DO WE
7	FAIRLY WEIGHT OUR EFFORTS AMONG THESE DIFFERENT
8	DISEASES AND WHERE ARE THERE THE BEST OPPORTUNITIES,
9	AND HAVE WE SATURATED OR NOT OUR EFFORTS IN THESE
10	OTHER DISORDERS?
11	SO THAT WOULD BE MY ANSWER. IT'S NOT A
12	PERFECT ANSWER, I RECOGNIZE, BUT I THINK IT FAIRLY
13	SUMMARIZES THE VIEWS OF THE GROUP AS WE'VE TALKED
14	ABOUT THESE THINGS, THESE DISORDERS, AND IN
15	PARTICULAR WHAT WE DISCUSSED FOLLOWING THE PORTFOLIO
16	REVIEW BACK AT OUR FIRST MEETING.
17	STEVE JUELSGAARD.
18	DR. FISHER: IF WE GO AS DEEPLY INTO ALL
19	OF THE OTHER NEURO OPPORTUNITIES AS WE ARE NOW
20	DELVING INTO THE MENTAL HEALTH SIDE OF THINGS, WE'RE
21	GOING TO BE AT THIS DISCOVERY PROCESS FOR A VERY
22	LONG TIME AND LIKELY WILL NOT HAVE ANY
23	RECOMMENDATIONS REGARDING HOW TO ALLOCATE 1.5
24	BILLION ACROSS THOSE UNTIL WE HAVE THOROUGHLY VETTED
25	ALL OF THEM. AND AT THIS PACE, THAT COULD TAKE A

1	VERY LONG TIME TO DO ALL THE OTHERS JUSTICE.
2	CHAIRMAN GOLDSTEIN: I'LL DISAGREE WITH
3	THAT POINT, FRED. I MEAN I UNDERSTAND THE SENTIMENT
4	AND WHERE IT'S COMING FROM. YES, WE DON'T WANT TO
5	SPEND THE NEXT SIX YEARS PLANNING. I'M IN COMPLETE
6	AGREEMENT WITH THAT EXTREME VERSION OF THE ARGUMENT.
7	MY SENSE, HOWEVER, BASED ON THE
8	CONVERSATIONS WE'VE HAD THUS FAR, IS THAT WE AS A
9	GROUP ARE SUBSTANTIALLY UNDERREPRESENTED IN OUR
10	UNDERSTANDING OF NEUROPSYCHIATRIC DISORDERS IN
11	PARTICULAR AND HOW TO TACKLE THEM USING STEM CELL
12	TECHNOLOGY. AND THAT USING STEM CELL TECHNOLOGIES,
13	THERAPIES, GENE THERAPIES, WHAT HAVE YOU, FOR THE
14	VARIOUS NEURODEGENERATIVES, WE ACTUALLY DO AS A
15	GROUP HAVE A MUCH BETTER UNDERSTANDING OF THOSE FROM
16	THE START HERE. AND I THINK WE CAN BRING IN
17	PLANNING EFFORTS IN THOSE AREAS RELATIVELY QUICKLY
18	WITH RESPECT TO HOW QUICKLY OR NOT THAT WE ARE
19	MOVING IN THIS ONE UNDERREPRESENTED AREA.
20	I'LL JUST POINT OUT THAT IT'S NOT AS
21	THOUGH WE ARE DOING NOTHING ON THESE OTHER AREAS.
22	IN FACT, WE HAVE SIGNIFICANT FUNDING GOING INTO
23	STUDIES OF A VARIETY OF OTHER NEURODEGENERATIVE
24	DISORDERS THAT IS CONTINUING. IT'S COMING IN
25	THROUGH A MORE CONVENTIONAL MECHANISM. AND I THINK

13

1	AT THE MOMENT, AT LEAST, IF ANYTHING, WE ARE TRYING
2	TO GET THE NEUROPSYCHIATRIC DISORDERS CAUGHT UP TO
3	WHERE THE NEURODEGENERATIVES ARE BECAUSE AN
4	UNDERRECOGNIZED SET OF TECHNOLOGIES FOR ATTACKING
5	NEUROPSYCHIATRIC DISORDERS ARE, IN FACT, THE STEM
6	CELL TECHNOLOGIES. WE'LL GET A BITE OF THAT TODAY
7	FROM TOM AND KRISTEN. AND I THINK AT OUR NEXT
8	MEETING OR THE ONE THEREAFTER, WE CAN INTELLIGENTLY
9	AND IN A BETTER INFORMED WAY DISCUSS HOW DO WE WANT
10	TO GO ABOUT PRIORITIZATION RELATIVE TO EACH OTHER OF
11	THESE DIFFERENT DISORDERS.
12	THE PROBLEM IN AN AGENCY LIKE THIS IS, AS
13	I'M SURE YOU AND OTHERS RECOGNIZE, IS YOU'RE OFTEN
14	LOOKING FOR A BALANCE BETWEEN, IN A SENSE, PICKING
15	AREAS THAT YOU THINK THERE ARE OPPORTUNITIES FOR
16	INVESTMENT. AND THAT NEEDS TO BE BALANCED WITH THE
17	TRADITIONAL GRANTMAKING MECHANISM, WHICH IS ONGOING
18	EVEN AS WE SPEAK FOR MOVING POTENTIAL THERAPIES
19	THROUGH ANIMAL MODELS, DOING ENOUGH BASIC SCIENCE TO
20	DEVELOP NEW IDEAS, AND TO LAUNCH CLINICAL TRIALS.
21	AND THOSE ACTIVITIES ARE ONGOING. AND THE
22	DISCUSSION OF RELATIVE PRIORITIES OF THESE VARIOUS
23	DISORDERS TO EACH OTHER AND TO NEUROPSYCHIATRIC
24	DISORDERS THAT WE ARE DISCUSSING CURRENTLY, THAT
25	KIND OF PRIORITIZATION IS ALWAYS CHALLENGING TO DO.

14

1	AND IN SOME WAYS THE GRANTMAKING MECHANISM DOES PART
2	OF THAT FOR US SIMPLY BASED ON WHAT DO REVIEWERS SEE
3	AS HIGH QUALITY, HIGH LIKELIHOOD OF SUCCESS
4	PROJECTS.
5	SO I THINK WE'LL GET TO WHERE YOU WANT US
6	TO BE ACROSS THIS SUMMER. WE AGREED AT THE FIRST
7	MEETING NOT TO TRY A MAD RUSH TO TRY TO GET A
8	COMPLETE PLAN WITH ALL OF THE DISORDERS AND ALL OF
9	THE SCIENTIFIC AREAS WE MIGHT WANT TO EMBRACE BY THE
10	JUNE MEETING OF THE ICOC AS BEING UNREALISTIC. AND
11	SO, YES, WE ARE GIVING OURSELVES MORE TIME THAN JUST
12	GOING TO THE JUNE MEETING, WHICH HAD BEEN MY INITIAL
13	HOPE. AND I THINK, UPON THINKING THROUGH WITH THIS
14	GROUP THE MAGNITUDE OF THAT CHALLENGE, WE'RE GOING
15	TO HAVE TO GO A LITTLE BIT SLOWER AND A LITTLE BIT
16	MORE DELIBERATELY. AND I THINK THAT'S WHAT WE ARE
17	DOING.
18	I DON'T KNOW IF THAT SATISFIES YOU OR NOT,
19	BUT IT'S A PARTIAL ONE.
20	DR. FISHER: THAT'S FINE. I APPRECIATE
21	THE RESPONSE.
22	CHAIRMAN GOLDSTEIN: OKAY. GREAT. THANK
23	YOU, FRED. STEVE.
24	MR. JUELSGAARD: YES. SO FIRST LET ME
25	APOLOGIZE THAT MY IMAGE IS NOT SHOWING UP ON THE
	15

1	SCREEN. OUR INTERNET WENT OUT THIS MORNING, SO I'M
2	RELYING ON MY IPAD HOT SPOT. SO HOPEFULLY WHAT I'M
3	SAYING WILL COME THROUGH.
4	SO AN OBSERVATION AND A QUESTION. SO
5	STARTING AT THE GRAND SCALE, THE PURPOSE OF CIRM AND
6	ITS MISSION, IF YOU WILL, IS TO MARRY REGENERATIVE
7	MEDICINE AND GENE THERAPY WITH THE TREATMENT OF
8	UNMET MEDICAL NEEDS. SO NOW DIVING A LITTLE DEEPER
9	INTO THAT, I'LL BE REALLY INTERESTED IN ABLA'S
10	SURVEY OF THE GRANT INSTITUTIONS IN CALIFORNIA AND
11	FIND OUT HOW MANY ARE DEALING WITH THE ISSUE OF
12	NEUROPSYCHIATRIC DISORDERS USING EITHER REGENERATIVE
13	MEDICINE OR GENE THERAPY AS THE TOOLS TO STUDY IT.
14	I WOULD JUST NOTE, I AM NOT AWARE OF, IT
15	MAY BE THAT THERE ARE SOME, BUT I'M NOT AWARE OF
16	ANYBODY COMING FORWARD WITH GRANT APPLICATIONS THAT
17	DEAL WITH NEUROPSYCHIATRIC DISORDERS USING THOSE
18	TOOLS THAT I JUST DESCRIBED. IT SEEMS TO ME WE'VE
19	HAD A AND WE'VE BEEN OPEN-MINDED ABOUT THIS
20	WE'VE HAD A DEARTH OF APPLICATIONS SO FAR, WHICH
21	BEGS THE QUESTION OF TO WHAT EXTENT ARE SCIENTISTS
22	IN CALIFORNIA REALLY FOCUSED ON USING THESE TOOLS OF
23	REGENERATIVE MEDICINE, GENE THERAPY TO DEAL WITH
24	NEUROPSYCHIATRIC DISEASE.
25	MORE PARTICULARLY, SO WE'RE GOING TO HEAR
	16

1	FROM THOMAS SUDHOF. THOMAS IS AT STANFORD
2	UNIVERSITY, SO HE'S LOCATED IN CALIFORNIA. MY
3	QUESTION OF THOMAS: HAS HE EVER APPLIED FOR A CIRM
4	GRANT FOR ANY OF HIS WORK THAT HE'S DONE BECAUSE
5	HE'S GOING TO BE SPEAKING TO THE ISSUE OF STEM CELL
6	THERAPY AND NEUROPSYCHIATRIC DISORDERS. AND IF HE
7	HAS, WHAT HAVE THOSE RELATED TO? AND IF NOT, WHY
8	NOT?
9	SO MY CONCERN IS THE FOUNDATION ON WHICH
10	WE ARE TRYING TO BUILD A NEUROPSYCHIATRIC PROGRAM
11	AND HOW SOLID IS THAT FOUNDATION TO BEGIN WITH, OR
12	IS IT REALLY SOMETHING THAT WE HAVE TO CREATE OUT OF
13	WHOLE CLOTH HERE COMING OUT OF THIS GROUP? DONE.
14	CHAIRMAN GOLDSTEIN: SO, STEVE, I THINK
15	THOSE ARE EXCELLENT QUESTIONS. IN FACT, THOSE ARE
16	THE KINDS OF QUESTIONS WE ARE IN THE PROCESS OF
17	TRYING TO TANGLE WITH. THE SURVEY THAT ROSA IS
18	BUILDING WILL GIVE US A LITTLE BIT MORE INFORMATION
19	ON THE QUESTIONS YOU'VE POSED. TOM, I THINK, WILL
20	ADDRESS THE QUESTIONS YOU'VE JUST RAISED IN HIS
21	PRESENTATION HOPEFULLY. SO WE'LL FIND OUT WHAT THE
22	ANSWER IS.
23	I'LL JUST NOTE THAT YOU'RE RIGHT. THE
24	CONVENTIONAL GRANTMAKING MECHANISM HAS DONE A PRETTY
25	GOOD JOB OF IDENTIFYING NEURODEGENERATIVE PROJECTS
	17

1	AND SOME NEURODEVELOPMENTAL PROJECTS. WHY WE DON'T
2	HAVE AN EXISTING INVESTMENT IN NEUROPSYCHIATRIC,
3	ESPECIALLY GIVEN HOW COMMON THESE DISORDERS ARE, IS
4	NOT SO CLEAR TO ME AS YET. AND I THINK THIS IS
5	SOMETHING THAT WE WILL BE FINDING OUT VIA ROSA'S
6	SURVEY AND HEARING FROM TWO OF THE LEADING USERS OF
7	STEM CELL TECHNOLOGY TO TACKLE NEUROPSYCHIATRIC
8	DISORDERS. I THINK THEY'LL BOTH BE SCHIZOPHRENIA IS
9	MY RECOLLECTION, BUT WE'LL FIND OUT. AND WE'LL TAKE
10	IT FROM THERE.
11	I DO FIND IT HARD TO BELIEVE THAT IT'S
12	ONLY A QUALITY ISSUE. OUR GRANTMAKING SYSTEM REALLY
13	PUTS QUALITY FIRST AND AREAS OF ENDEAVOR A CLOSE
14	SECOND HAS BEEN MY OBSERVATION OVER THE YEARS, BUT
15	WE'LL DELVE INTO THIS ISSUE MORE DEEPLY AS WE GO.
16	OKAY. AL, PLEASE.
17	MR. ROWLETT: I WANTED TO FIRST
18	ACKNOWLEDGE THAT I GOT DROPPED, AND SO I'M GOING TO
19	LEAVE MY CAMERA OFF UNTIL I CAN FIGURE OUT MY
20	INTERNET ISSUES. SO MY APOLOGIES FOR ONLY HEARING
21	MY AUDIO.
22	I AM A SUPPORTER OF THE NEUROPSYCHIATRIC
23	APPROACH. ONE OF THE REASONS IS THAT OFTENTIMES I
24	HAVE THE UNIQUE PRIVILEGE OF WORKING WITH A LOT OF
25	PEOPLE WHO HAVE BEEN DIAGNOSED WITH DIFFERENT FORMS

18

1	OF SCHIZOPHRENIA. AND SELDOM ARE THE APPROACHES FOR
2	TREATMENT LIKE THOSE THAT ARE SPONSORED BY THE
3	AGENCY, REGENERATIVE MEDICINE, OR REALLY LOOKING AT
4	APPROACHES THAT COULD AMELIORATE SOME OF THE ORGANIC
5	CAUSES OF SCHIZOPHRENIA TYPICALLY AREN'T TALKED
6	ABOUT. WHAT IS DISCUSSED IS THERE'S A PLETHORA OF
7	DATA ASSOCIATED WITH THE SOCIAL DETERMINANTS AND
8	OTHER FACTORS THAT INFLUENCE THE TRAJECTORY OR THE
9	COURSE OF THE DISEASE.
10	THAT INFORMATION COUPLED WITH WHAT CIRM
11	MIGHT BE DOING, I THINK, WOULD RESULT IN SOME
12	WONDERFUL GRANTMAKING OPPORTUNITIES AND ACTUALLY
13	SOME THINGS THAT ARE QUITE INTRIGUING IN THE AREA OF
14	ADVANCING THE INITIATIVES ASSOCIATED WITH THE
15	PATIENT PERSPECTIVE THAT CIRM IS EMBRACING AND
16	ENSURING THAT DIVERSITY, EQUITY, INCLUSION IS
17	INCULCATED INTO ANY RESPONSE THAT WE MIGHT CONSIDER.
18	THERE'S A LOT OF WORK IN THAT AREA WITH
19	NEUROPSYCHIATRIC DISORDERS BECAUSE THE APPROACH HAS
20	BEEN TYPICALLY SUPPORTING PEOPLE CLINICALLY WITH HOW
21	TO LIVE WITH THE DISEASE AND AMELIORATING SOCIAL
22	DETERMINANTS. SO FOR FEAR OF REPEATING MYSELF
23	AGAIN, I JUST WANT TO SAY, LARRY, I THINK YOU GOT TO
24	START SOMEWHERE. I HEARD SOMEONE SAY A MILE WIDE OR
25	A MILE DEEP, AND WE'RE GOING TO GO A MILE DEEP AND

19

1	AN INCH WIDE AND SEE WHAT WE GET. I SUPPORT THE
2	EFFORT.
3	CHAIRMAN GOLDSTEIN: GREAT. THANK YOU,
4	AL.
5	I'LL JUST ADD THAT MY READING OF THE
6	LITERATURE SUGGESTS THAT THESE DISORDERS ARE NOT
7	PARTICULARLY RARE. THEY MAY BE MORE COMMON IN
8	UNDERSERVED COMMUNITIES, ALTHOUGH I THINK WE DON'T
9	REALLY KNOW THAT. AND MY GUESS WOULD BE THAT MOST
10	YOUNG SCIENTISTS, WHEN THEY'RE STARTING THEIR
11	CAREERS, HAVE A LOOK AT THE MAGNITUDE OF THIS
12	PROBLEM AND THE COMPLEXITY OF IT AND SWITCH TO OTHER
13	AREAS OF RESEARCH. BUT I DON'T KNOW THAT. THAT IS
14	SPECULATION ON MY PART.
15	OKAY. ANYBODY ELSE BEFORE WE HEAR FROM
16	KRISTEN?
17	DR. SUDHOF: ONE THING.
18	CHAIRMAN GOLDSTEIN: YES, PLEASE.
19	DR. SUDHOF: I JUST WANT TO REMIND YOU I
20	HAVE A HARD STOP AT 1 O'CLOCK.
21	CHAIRMAN GOLDSTEIN: OH, RIGHT. SORRY.
22	YES. OKAY. I'LL INVERT THE ORDER. THANK YOU FOR
23	REMINDING ME, TOM. MUCH APPRECIATED.
24	OKAY. SO, TOM, YOU'RE UP WITH NO FURTHER
25	ADO.
	20

1	DR. SUDHOF: OKAY. LET ME SHARE MY
2	SCREEN.
3	SO IT'S REALLY AN HONOR FOR ME TO PRESENT
4	TO YOU HERE TODAY WHY I BELIEVE, AND I HOPE I CAN
5	MAKE THIS CLEAR, THAT CIRM WOULD BE WELL PLACED TO
6	SUPPORT VIA A SOLID GRANTING MECHANISM RESEARCH INTO
7	THE BASIC PROCESSES THAT UNDERLIE NEUROPSYCHIATRIC
8	DISORDERS.
9	THE QUESTIONS REALLY ARE WHY DO WE NEED
10	STEM CELL BIOLOGY TO STUDY NEUROPSYCHIATRIC DISEASES
11	AND HOW CAN STEM CELL BIOLOGY HELP US UNDERSTAND
12	WHAT IS ARGUABLY A MAJOR CRISIS IN OUR HEALTHCARE
13	SYSTEM? AND I THINK THERE CAN BE NO DOUBT, AS LARRY
14	ALREADY ARTICULATED, THAT NEUROPSYCHIATRIC DISORDERS
15	ARE NOT RARE. AND, FOR EXAMPLE, THE HOUSING CRISIS,
16	THE HOMELESS CRISIS THAT WE HAVE IN CALIFORNIA IS
17	PARTLY, AT LEAST, I BELIEVE, DUE TO THE PROBLEM OF
18	NEUROPSYCHIATRIC DISORDERS. THIS IS A WIDELY
19	DISTRIBUTED, UNFORTUNATELY, QUITE HIGH FREQUENCY SET
20	OF DISEASES.
21	NOW, NEUROPSYCHIATRIC DISORDERS ARE
22	NEURODEVELOPMENTAL. THAT IS, THE IDEA IS THAT MOST
23	PEOPLE IN THE FIELD FEEL THAT THEY ARE EMERGING FROM
24	SOME KIND OF MISALIGNMENT DURING THE PROCESS OF HOW
25	THE BRAIN IS WIRED DURING DEVELOPMENT. AND,

21

1	THEREFORE, STEM CELL BIOLOGY, WHICH IS IDEALLY
2	SUITED, ESPECIALLY FOR DEVELOPMENTAL QUESTIONS, IS
3	ACTUALLY A VERY GOOD WAY OF APPROACHING THIS,
4	ESPECIALLY SINCE IT CAN BE DONE WITH HUMAN MATERIAL.
5	AND WHAT I WANT TO DO IS TALK ABOUT
6	SCHIZOPHRENIA AS AN EXAMPLE, BUT MY LAB, AS WELL AS
7	KRISTEN'S AND OBVIOUSLY MANY OTHERS, HAVE ALSO USED
8	STEM CELL BIOLOGY FOR OTHER NEUROPSYCHIATRIC
9	DISORDERS. AND SCHIZOPHRENIA I WANT TO USE AS AN
10	EXAMPLE BECAUSE THE GENETICS OF SCHIZOPHRENIA ARE SO
11	WELL UNDERSTOOD.
12	WHAT YOU SEE HERE IS TAKEN FROM A PAPER
13	FROM ONE OF THE LEADING LABS AT THE BROAD ON THE
14	GENETICS OF SCHIZOPHRENIA. AND YOU CAN SEE HERE THE
15	PLOT OF THE FREQUENCY WITH WHICH A CERTAIN
16	POLYMORPHISM GENETIC CHANGE HAPPENS IN THE GENERAL
17	POPULATION VERSUS THE CHANCE, THE ODDS RATIO OF
18	GETTING SCHIZOPHRENIA. YOU CAN SEE THAT THOSE
19	POLYMORPHISMS THAT HAVE A VERY LOW IMPACT ARE SHOWN
20	ON THE RIGHT. THEY ARE MUCH MORE FREQUENT
21	OBVIOUSLY. AND THEN YOU CAN ALSO SEE THAT ON THE
22	LEFT THERE'S THESE HIGH IMPACT GENE MUTATIONS
23	GENERALLY THAT ARE EXTREMELY RARE.
24	THE PROBLEM IS THAT WE HAVE HAD ENORMOUS
25	PROGRESS IN HUMAN GENETICS, BUT ALMOST NONE IN
	22

1	MECHANISTIC SCIENCE. IN OTHER WORDS, WE DON'T
2	ACTUALLY KNOW HOW THESE GENETIC CHANGES PREDISPOSE
3	TO NEUROPSYCHIATRIC DISORDERS SUCH AS SCHIZOPHRENIA.
4	AND A SIMILAR PICTURE EMERGES FOR AUTISM. THE
5	REASON WHY, AND WE CAN TALK ABOUT THIS AT THE END,
6	WHY THERE HAS BEEN SO LITTLE PROGRESS IN
7	THERAPEUTICS AND PRESUMABLY WHY THERE ARE FEW GRANT
8	APPLICATIONS TO CIRM OR OTHERS THAT ARE DIRECTLY
9	TRANSLATIONAL IS THAT WE HAVE FANTASTIC GENETICS,
10	BUT THE GENETICS DOESN'T ACTUALLY TELL US HOW IT
11	WORKS. IT ONLY TELLS US THAT THERE'S A GENETIC
12	PREDISPOSITION.
13	SO INSTEAD OF GOING THROUGH ALL THESE
14	GENES AND TALKING ABOUT WHAT WE AND OTHERS HAVE DONE
15	ON THEM, I THOUGHT THAT MY BEST SERVICE TO THE
16	COMMITTEE WOULD BE TO EXPLAIN TO YOU ABOUT HOW OUR
17	LAB HAS WORKED ON ONE PARTICULAR GENE, A GENE CALLED
18	NRXN1, THAT IS NOW HIGHLIGHTED HERE WITH THE CIRCLE,
19	AND THAT IS CRUCIALLY INVOLVED IN SCHIZOPHRENIA
20	BECAUSE TO THIS POINT IT IS STILL THE ONE GENE THAT
21	PROVIDES THIS AS A SINGLE GENE MUTATION PROVIDES THE
22	MOST FREQUENT PREDISPOSITION TO SCHIZOPHRENIA.
23	YOU CAN ALSO SEE THAT IT HAS QUITE A HIGH
24	ODDS RATIO, MEANING IT HAS A VERY LARGE EFFECT SIZE.
25	IT'S NOT A SMALL EFFECT SIZE.

1	AND SO WHAT I'M GOING TO DO TODAY IS TRY
2	TO ILLUSTRATE FOR YOU WITH THIS STUDY HOW WE CAN
3	ACTUALLY GET CLOSER TO MECHANISMS ALTHOUGH I HAVE TO
4	TELL YOU WE DON'T YET UNDERSTAND EXACTLY. WE ARE
5	NOT THERE YET AND WILL TAKE EVEN MORE BASIC STUDIES.
6	BASIC STUDIES ARE, THIS IS MY MESSAGE, THE CRUCIAL
7	REQUIREMENT AT THIS POINT IN UNDERSTANDING
8	NEUROPSYCHIATRIC DISEASES IN ORDER TO MAKE PROGRESS
9	TOWARDS THERAPEUTICS.
10	SO NRXN1 IS A GENE THAT BELONGS TO A
11	FAMILY CALLED NEUREXINS. AND WHAT YOU SEE HERE VERY
12	SCHEMATICALLY IS WHAT THESE PROTEINS LOOK LIKE.
13	THEY'RE CELL SURFACE PROTEINS. THEY HAVE MULTIPLE
14	DOMAINS THAT ARE NOT VERY RELEVANT AS SHOWN HERE
15	CALLED L AND E. AND THEY BIND ACROSS THE SYNAPSE,
16	WHICH IS SCHEMATICALLY ILLUSTRATED HERE AS LEFT AND
17	RIGHT, ON THE POSTSYNAPTIC SIDE TO A NUMBER OF
18	LIGANDS. SO THEY HAVE LOTS OF DIFFERENT FUNCTIONS
19	BY BINDING LOTS TO LOTS OF DIFFERENT PROTEINS.
20	THERE ARE THREE GENES THAT HAVE
21	INDEPENDENT PROMOTERS BECAUSE THE NEUREXINS COME IN
22	TWO FLAVORS, ALPHA, LONGER, BIGGER PIECES THAT ARE
23	SHORTER. THEY HAVE, AS I ALREADY MENTIONED, DIVERSE
24	TRANS-SYNAPTIC LIGANDS AND EXTENSIVE ALTERNATIVE
25	SPLICING. AND HERE'S WHY WE ARE TALKING ABOUT THIS.

24

1	THERE'S THOUSANDS OF GENE MUTATIONS IN NEUREXINS,
2	NOT ONLY NRXN1, BUT BY FAR THE MOST FREQUENTLY,
3	NRXN1, THAT PREDISPOSE TO MULTIPLE NEUROPSYCHIATRIC
4	DISORDERS. SO WHAT I'M GOING TO TELL YOU ABOUT
5	TODAY IS ACTUALLY NOT ONLY ABOUT SCHIZOPHRENIA.
6	IT'S ABOUT NEUROPSYCHIATRIC DISORDERS IN GENERAL.
7	WHAT YOU SEE HERE IS A SLIDE TAKEN FROM A
8	PAPER BY COSEMANS, ET AL. WHERE THEY HAVE MAPPED THE
9	DELETIONS IN THE NRXN1 GENE AND COMPARED THEM
10	WHETHER OR NOT THEY HAVE A SPECIFIC PHENOTYPE IN
11	TERMS OF THE CLINICAL PRESENTATION OR NOT. AND IN
12	BLACK YOU SEE THOSE THAT DO CAUSE OF CLINICAL
13	PHENOTYPE, IN GREEN THOSE THAT DON'T. THE POINT OF
14	THIS SLIDE IS NOT TO LET YOU KNOW ABOUT THE DETAILS
15	OF THESE MUTATIONS. THAT'S IRRELEVANT. THE POINT
16	OF THE SLIDE IS THAT THESE MUTATIONS, INDEPENDENT OF
17	WHERE THEY ARE, ARE ASSOCIATED WITH A DIVERSE SET OF
18	CLINICAL PRESENTATIONS, AUTISM, SCHIZOPHRENIA,
19	TOURETTE, INTELLECTUAL DISABILITY. THOUSANDS OF
20	CASES, ENORMOUS DIVERSITY.
21	AND SO THE CHALLENGE HERE, AND THE SAME
22	ACTUALLY APPLIES FOR OTHER GENE MUTATIONS, IS NOT
23	THAT WE HAVE THE GENE MUTATIONS. THE CHALLENGE IS
24	TO UNDERSTAND WHY THE SAME MUTATIONS ARE SO HIGHLY
25	PREDISPOSING TO DIFFERENT NEUROPSYCHIATRIC DISEASES.

25

1	AND JUST TO ILLUSTRATE THIS POINT EVEN
2	FURTHER, AGAIN FROM THE SAME PAPER ON THIS CLINICAL
3	PRESENTATION OF THE PATIENTS, WHAT IT MAPS IS THE
4	FREQUENCY OF DELETERIOUS VERSUS NON-DELETERIOUS
5	MUTATIONS SHOWN ON TOP. AND THE BOTTOM EXHIBITS THE
6	TYPES OF PRESENTATIONS THAT ARE OBSERVED IN PATIENTS
7	WITH THESE DELETIONS IN THE NRXN1 GENE. AND YOU CAN
8	SEE THERE'S A WHOLE GAMUT OF PRESENTATIONS THAT
9	SHIFT SLIGHTLY DEPENDING ON WHERE THE DELETIONS ARE
10	IN THIS HUGE GENE.
11	BUT THE POINT HERE IS THAT IN THE MAJORITY
12	OF THE CASES, IT'S A PSYCHIATRIC DISORDER THAT IS
13	THE MANIFEST OF THIS PARTICULAR MUTATION, RESULTING
14	IN A SEVERE IMPAIRMENT IN HOW THESE PATIENTS CAN
15	DEAL WITH EVERYDAY LIFE. AND THIS IS SORT OF AN
16	EXAMPLE, I THINK IN MANY WAYS A PARADIGM OF HOW
17	NEUROPSYCHIATRIC DISORDERS ARE CURRENTLY VIEWED IN
18	THE FIELD.
19	MOST OF THESE MUTATIONS ARE ACTUALLY
20	INHERITED BECAUSE THEY ONLY PARTIALLY MANIFEST, BUT
21	A SIGNIFICANT PART IS ALSO DE NOVO AS SHOWN HERE AT
22	THE BOTTOM. SO THIS IMPACT OF THESE NEUREXIN
23	DELETIONS IS HUGE. AND AS I ALREADY MENTIONED, THE
24	NEUREXIN DELETIONS ARE THE MOST PREVALENT
25	SINGLE-GENE MUTATIONS PREDISPOSING TO SCHIZOPHRENIA

26

1	AND AMONG THE MOST PREVALENT PREDISPOSING TO
2	TOURETTE AND TO AUTISM.
3	AND SO WHAT I'M GOING TO TELL YOU NEXT IS
4	HOW WE APPROACHED AN UNDERSTANDING OF WHY THESE
5	MUTATIONS MIGHT BE PREDISPOSING TO NEUROPSYCHIATRIC
6	DISORDERS USING STEM CELL BIOLOGY. AND I'M GOING TO
7	TRY TO LEAD YOU THROUGH SOME OF THE STUDIES VERY
8	BRIEFLY AND VERY SCHEMATICALLY TO TRY TO GIVE YOU A
9	FLAVOR FOR WHAT NEEDS TO BE DONE, AT LEAST IN OUR
10	VIEW, IN ORDER TO UNDERSTAND HOW THIS CAN
11	POTENTIALLY BE ANALYZED.
12	SO AS A STARTING POINT, SOME YEARS AGO,
13	ABOUT TEN YEARS AGO, WE DEVELOPED A METHOD OF
14	RAPIDLY GENERATING HUMAN NEURONS FROM STEM CELLS,
15	AND WE USED THIS METHOD TO ANALYZE NRXN1 MUTATIONS.
16	NOW, THIS METHOD, I BELIEVE, IS NOW WIDELY
17	USED BY MANY DIFFERENT LABS. AND MAYBE KRISTEN WILL
18	ALSO TALK ABOUT IT. AND THE METHOD DEPENDS ON
19	TRANSDUCING STEM CELLS, IPS CELLS, ES CELLS, ANY
20	KIND OF STEM CELL, WITH VIRUSES THAT EXPRESS A
21	TRANSCRIPTION FACTOR. AND BY EXPRESSING THE SINGLE
22	TRANSCRIPTION FACTOR NGN2, WE CAN MAKE THESE STEM
23	CELLS BECOME NEURONS WITHIN WEEKS. AND THESE
24	NEURONS ARE TRUE NEURONS. THEY DON'T ONLY LOOK LIKE
25	NEURONS, BUT THEY ACTUALLY FORM SYNAPSES. AND THIS

1	IS ILLUSTRATED DOWN HERE WHERE YOU CAN SEE THAT EVEN
2	AFTER TWO WEEKS AND CERTAINLY AFTER THREE WEEKS
3	THERE'S ROBUST SYNAPTIC RESPONSES. AND AS THESE
4	NEURONS MATURE IN THE DISH WHERE THEY CAN BE KEPT
5	FOR MONTHS AND EVEN YEARS, THESE SYNAPTIC RESPONSES
6	BECOME BIGGER AND BIGGER AND BIGGER. SO THEY
7	CONTINUE TO MATURE AS A FUNCTION OF TIME. AND
8	BECAUSE THESE SYNAPTIC RESPONSES RESEMBLE THOSE THAT
9	ARE OBSERVED IN AN ADULT, THESE SYNAPTIC RESPONSES
10	AND THE SYNAPSES CAN BE USED TO ANALYZE DISEASE
11	PROCESSES.
12	SO USING THIS SYSTEM, WE ENGINEERED
13	CONDITIONAL NRXN1 MUTATIONS INTO STEM CELLS. AND WE
14	USED CONDITIONAL MUTATIONS BECAUSE WE WANTED TO HAVE
15	A SITUATION WHERE WE COULD ANALYZE THE MUTATION
16	INDEPENDENT OF THE GENETIC BACKGROUND. SO THE
17	GENETIC BACKGROUND WOULD ALWAYS BE THE SAME FOR BOTH
18	THE TEST AND THE CONTROL, THE MUTANT AND THE WILD
19	TYPE. THEN WE ANALYZED GENETICALLY IDENTICAL WILD
20	TYPE AND MUTANT HUMAN NEURONS.
21	WHAT YOU SEE HERE ON TOP IS A PICTURE OF
22	WHAT THESE NEURONS LOOK LIKE. THEY LOOK LIKE ANY
23	KIND OF NEURON. IT DOESN'T MATTER IF THEY HAVE A
24	HETEROZYGOUS NRXN1 LOSS-OF-FUNCTION OR NOT. BUT AS
25	EXPECTED, THEY EXPRESS LESS NRXN1 BECAUSE THEY HAVE

A HETEROZYGOUS DELETION.

1

25

AND THEN WE ASKED, WELL, WHAT DOES THIS DO 2 TO NEURONAL DEVELOPMENT AND SYNAPSE NUMBERS? AND IT 3 DOESN'T DO ANYTHING TO EITHER. AND WE ASKED WHETHER 4 THERE ARE ANY FUNCTIONAL EFFECTS SINCE THERE'S NO 5 6 EFFECT ON THE ACTUAL MORPHOLOGY ON THE ABILITY OF THESE NEURONS TO FORM SYNAPSES IN THE FIRST PLACE. 7 AND WE OBSERVED A VERY ROBUST IMPAIRMENT IN SYNAPTIC 8 9 TRANSMISSION THAT IS ILLUSTRATED HERE. IN OTHER WORDS, THESE NEURONS, THEY MAKE SYNAPSES WHICH LOOK 10 PERFECTLY NORMAL WHEN YOU LOOK AT THEM IN A 11 MICROSCOPE, EM OR LIGHT; BUT WHEN YOU MEASURE THEIR 12 FUNCTION, THEIR FUNCTION IS IMPAIRED. THEY HAVE A 13 14 DISCRETE PHENOTYPE, THEY FLEX, DECREASE IN RELEASE 15 PROBABILITY, SO PRESYNAPTIC FUNCTION, THE WAY HOW A PRESYNAPTIC NEURON SENDS OUT A SIGNAL DURING 16 17 SYNAPTIC TRANSMISSION TO THE POST-SYNAPTIC SIDE. AND THIS PARTICULARLY DISCRETE PHENOTYPE IS ROBUSTLY 18 19 OBSERVED. 20 WE WONDERED WHAT THE MOLECULAR CORRELATE, AND THIS IS WHERE WE DON'T REALLY KNOW HOW THIS 21 22 PRESYNAPTIC DECREASE HAPPENS, HOW THIS IMPAIRMENT 23 HAPPENS, BUT WE FOUND AS A MAJOR SIGNATURE THAT THERE WAS ONE PARTICULAR PROTEIN THAT WAS CHANGED IN 24

29

LEVELS AND, IN FACT, INCREASED A PROTEIN CALLED

1	CASK. I WON'T DISCUSS THIS ANY FURTHER. IT MAKES
2	SENSE THOUGH BECAUSE WE KNOW THAT THIS PROTEIN
3	ACTUALLY BINDS TO NEUREXINS.
4	SO THE ROBUST AND SELECTIVE FUNCTIONAL
5	IMPAIRMENT OF HETEROZYGOUS NRXN1-MUTANT NEURONS WERE
6	UNEXPECTED. WE DIDN'T EXPECT THAT SUCH A
7	HETEROZYGOUS DELETION WOULD CAUSE A MAJOR CHANGE.
8	AND WE WONDERED WOULD THIS ALSO BE OBSERVED IN
9	PATIENT-DERIVED NEURONS? IS THIS SOMETHING THAT IS
10	ONLY OBSERVED IN A RATHER ARTIFICIAL OR THE
11	WELL-CONTROLLED CONDITIONAL MUTATION, OR CAN THIS
12	ALSO BE OBSERVED IN A MORE TRANSLATIONAL RELEVANT
13	PATIENT DIRECT NEURON SITUATION?
14	AND SO WE INITIATED A LARGE-SCALE
15	VALIDATION PROJECT THAT TESTED THE POTENTIAL
16	TRANSLATABILITY OF WHAT WE HAD OBSERVED. AND THIS
17	WAS SPONSORED BY NIMH BECAUSE NIMH WAS VERY
18	CONCERNED ABOUT REPRODUCIBILITY AND ABOUT THE
19	ROBUSTNESS OF MANY NEUROPSYCHIATRIC-ASSOCIATED
20	PHENOTYPES THAT HAVE BEEN REPORTED IN THE LITERATURE
21	OVER THE YEARS.
22	SO THE PROJECT THAT WE INITIATED IS
23	ILLUSTRATED HERE SCHEMATICALLY. WE GENERATED, IN
24	COLLABORATION WITH NIMH, IPS CELLS FROM PATIENTS AND
25	MATCHED CONTROLS. AND THIS IS FROM SCHIZOPHRENIA
	30

1	PATIENTS. AND WE ANALYZED THREE PAIRS, NOT A LARGE
2	SAMPLE. BUT BECAUSE OF THE DEPTH OF ANALYSIS, WHICH
3	REQUIRES A HUGE AMOUNT OF INVESTMENT OF LABOR, THREE
4	PAIRS WAS ALL WE COULD DO WITH THE AVAILABLE
5	FUNDING.
6	WE THEN USED THESE HUMAN IPS CELLS AND WE
7	DISTRIBUTED THEM INTO TWO SITES IN THE COUNTRY,
8	STANFORD AND RUTGERS. AND THERE THESE IPS CELLS
9	WERE INDEPENDENTLY TRANSFORMED INTO NEURONS USING
10	OUR NGN2 METHOD AND THEN ANALYZED FUNCTIONALLY AND
11	THE RESULTS WERE COMPARED. I'M NOT GOING TO TELL
12	YOU IN DETAIL WHAT WE FOUND. SUFFICE IT TO SAY THAT
13	WE FOUND IDENTICAL PHENOTYPES IN RUTGERS AND
14	STANFORD DESPITE THE FACT THAT THEY WERE SEPARATELY
15	ANALYZED. AND THIS PHENOTYPE IS SUMMARIZED HERE,
16	WHICH IS A SELECTIVE LOSS OF SYNAPTIC STRENGTH
17	INDEPENDENT, WITHOUT ANY CHANGE IN THE MORPHOLOGY,
18	WITHOUT CHANGE IN SYNAPSE NUMBERS OF MAKING
19	SYNAPSES. ONLY THE STRENGTH OF THE SYNAPSE, OF
20	THESE EXCITATORY SYNAPSES, IN THESE HUMAN NEURONS
21	WAS IMPAIRED IN PATIENT-DERIVED NEURONS COMPARED TO
22	MATCHED OBVIOUSLY NONIDENTICAL CONTROLS.
23	AND THIS IS SHOWN HERE FOR THE THREE PAIRS
24	IN THREE DIFFERENT COLORS TO ILLUSTRATE TO YOU THAT
25	IN EACH CASE THE DECREASE IN SYNAPTIC STRENGTH WAS
	31

1	VERY, VERY SIMILAR, ACTUALLY AMAZINGLY SIMILAR. AND
2	WE ALSO OBSERVED AN INCREASE IN WHAT'S CALLED THE
3	C.V. IT DOESN'T REALLY MATTER WHAT THAT MEANS.
4	SUFFICE IT TO SAY THAT IT'S A REFLECTION OF THE
5	RELEASE PROBABILITY, SORT OF TELLS YOU OF HOW WELL
6	THE PRESYNAPTIC NEURON IS ABLE TO SEND OUT A SIGNAL.
7	SO THIS LARGE DECREASE IN RELEASE
8	PROBABILITY CAUSES A MAJOR LOSS OF SYNAPTIC
9	STRENGTH, AND THIS WAS REPLICATED, SUGGESTING THAT
10	THIS PROVIDES A SUBSTRATE FOR UNDERSTANDING WHY THIS
11	MUTATION IS NOT GOOD FOR PEOPLE, WHY IT PREDISPOSES
12	IN A SUBSET OF PEOPLE, ACTUALLY IN THE MAJORITY, TO
13	SOME NEUROPSYCHIATRIC DISORDER. AND THESE MUTATIONS
14	IN THESE PAIRS WAS ALSO ASSOCIATED WITH THE CASK
15	INCREASE THAT I OBSERVED ALREADY, TOLD YOU ABOUT IN
16	THE ENGINEERED NEURONS WHERE WE OBSERVED AN INCREASE
17	IN THE PROTEIN CALLED KYAT3. AND KYAT3 IS THE
18	KYNURENINE AMINOTRANSFERASE 3 THAT SYNTHESIZES
19	KYNURENIC ACID, WHICH IS A GLUTAMATE RECEPTOR
20	ANTAGONIST. SO IT FITS INTO THE GENERAL THEME OF
21	HAVING SYNAPTIC TRANSMISSION ABNORMALITY.
22	SO WE WONDERED ARE THESE CHANGES IN
23	PROTEIN LEVELS AND SYNAPTIC STRENGTH DUE TO A
24	TRANSCRIPTIONAL CHANGE IN RESPONSE TO THE NRXN1
25	DELETION? AND WE ASKED THIS BECAUSE NOWADAYS IT'S

32

1	REALLY COMMON TO DO RNASEQ EXPERIMENTS. IT'S EASY.
2	IT PROVIDES HUGE AMOUNTS OF DATA QUICKLY. SO
3	EVERYBODY DOES IT. AND MOST OF THE CASES PEOPLE
4	FIND SOMETHING THAT'S DIFFERENT, AND WE ALSO FOUND
5	SOMETHING THAT'S DIFFERENT. BUT THE MAJOR
6	DIFFERENCE WE FOUND IS SHOWN HERE IN THIS HEAT MAP
7	IS BETWEEN THE IPS AN ES CELLS AND THE NEURONS.
8	THERE THE DIFFERENCE WAS BASICALLY RED AND BLUE AS
9	YOU CAN SEE HERE AT THESE TWO HIGHLIGHTED AREAS.
10	WHEREAS, WHEN WE COMPARED EITHER PATIENT-DERIVED
11	NEURONS WITH CONTROL NEURONS OR ENGINEERED TEST
12	NEURONS WITH ENGINEERED CONTROL NEURONS, WE FOUND
13	VERY, VERY LITTLE DIFFERENCES. THE DIFFERENCES WERE
14	STATISTICALLY SIGNIFICANT, BUT THAT IS ONLY BECAUSE
15	IN TRANSCRIPTOMICS EVERYTHING IS STATISTICALLY
16	SIGNIFICANT.
17	IT'S ACTUALLY THE CASE THAT THERE IS MORE
18	DIFFERENCE, AS SHOWN HERE, IN THE PRINCIPAL
19	COMPONENT ANALYSIS BETWEEN THE PARENTAL IPS CELLS
20	AND THE NEURONS WHERE THE DIFFERENCES ARE HUGE.
21	THEN THERE IS BETWEEN THE NEURONS FROM WILD TYPE OF
22	CONTROLLED PATIENTS AND FROM PATIENTS, FROM CONTROL
23	INDIVIDUALS, SORRY, AND PATIENTS, AND ALSO WE
24	OBSERVED VERY LITTLE DIFFERENCE BETWEEN THE CONTROL
25	NEURONS AND TEST NEURONS WITH THE ENGINEERED

33

MUTATIONS.

1

2 SO THE CONCLUSIONS FROM THE RNASEQ 3 EXPERIMENTS IN OUR CASE ARE THAT THE ABNORMALITIES THAT WE OBSERVE IN SYNAPTIC STRENGTH ARE NOT DUE TO 4 GENE EXPRESSION CHANGES. THEY'RE DUE TO CHANGES OF 5 6 HOW NRXN1 BASICALLY ORGANIZES SYNAPSES. NRXN1 MUTATION HAS A MINIMAL IMPACT ON GENE EXPRESSION. 7 IT BASICALLY ACTS AT THE SYNAPSE AS WE HAVE SHOWN IN 8 9 OTHER STUDIES THAT I DON'T HAVE TIME TO DISCUSS IN ORDER TO ENABLE A SYNAPSE TO FUNCTION PROPERLY. AND 10 YOU CAN IMAGINE THAT IF YOU HAVE A WHOLE BRAIN WHERE 11 THE SYNAPSES, MOST OF THE SYNAPSES, HAVE A 12 DEFICIENCY IN SOME KIND OF SYNAPTIC TRANSMISSION, 13 14 THAT THIS DOES HAVE OVERALL CONSEQUENCES FOR NEURAL CIRCUITS. 15 FINALLY, I WANT TO BRIEFLY DISCUSS THE 16 17 NEED TO ACTUALLY DO SUCH EXPERIMENTS IN HUMAN NEURON CELLS DERIVED FROM STEM CELLS BECAUSE I THINK THAT, 18 19 ALTHOUGH MOUSE MODELS ARE TERRIFIC, WE NEED THEM, 20 THEY'RE ESSENTIAL FOR REALLY SCIENCE TRANSLATION, FOR EVERYTHING. IN THE END WE HAVE TO UNDERSTAND 21 22 WHAT HAPPENS IN HUMAN NEURONS AT THE MOST BASIC LEVEL WHICH WILL ALLOW US TO IDENTIFY POTENTIAL 23 24 THERAPEUTIC TARGETS, DEVELOP DRUGS, SCREEN FOR 25 DRUGS, AND EVENTUALLY GO INTO CLINICAL TRIALS.

34

1	AND THIS, WHAT I WANT TO TELL YOU ABOUT
2	HERE NOW IS A DIRECT COMPARISON OF HUMAN VERSUS
3	MOUSE NEURONS. SO WHEN WE GOT THE RESULTS THAT I
4	TALKED TO YOU UP TO NOW, WE WONDERED WHY IS IT THAT
5	WE DID NOT OBSERVE A COMPARABLE RESULT WITH
6	HETEROZYGOUS MUTATIONS THAT WE PREVIOUSLY ANALYZED
7	IN MOUSE NEURONS? AND THE POTENTIAL REASON COULD
8	HAVE BEEN THAT WE NEVER REALLY COMPARED THE SAME
9	PREPARATIONS, THE SAME APPROACHES. IN THE MOUSE
10	NEURONS YOU ALWAYS USED NEURONS THAT WERE ACTUALLY
11	GENERATED BY THE MICE AS THEY WERE DEVELOPING AS A
12	REAL ORGANISM. WHEREAS, IN THE CASE OF THE HUMAN
13	NEURONS, WE WERE MAKING THE HUMAN NEURONS
14	(INTERRUPTION.)
15	I'M ALMOST DONE. SO WHAT WE DID IN THESE
16	STUDIES IS WE MADE MOUSE AND HUMAN IPS CELLS THAT
17	WERE ES CELLS AND IPS CELLS THAT WERE EXACTLY
18	IDENTICAL, WITH THE IDENTICAL MUTATIONS,
19	HETEROZYGOUS MUTATIONS. EVERYTHING WAS EXACTLY THE
20	SAME. AND THEN WE ANALYZED THEM IN PARALLEL. AND
21	THIS ALLOWED US TO ACTUALLY COMPARE EXACTLY THE SAME
22	SITUATIONS AND TO TEST RIGOROUSLY WHERE THE MOUSE
23	MODELS ARE ULTRALY RELIABLE OR PARTIALLY RELIABLE.
24	AND WHAT WE FOUND, AS SHOWN HERE IN THIS VERY BUSY
25	SLIDE, SO I'M NOT GOING TO GO THROUGH THIS, JUST

35

1	FOCUS ON THE TOP, A AND D, IS THAT THE MOUSE NEURONS
2	DO NOT HAVE THE PHENOTYPE THAT THE HUMAN NEURONS
3	HAVE WHERE THERE IS A DECREASE IN SYNAPTIC ACTIVITY
4	CALLED MEPSC FREQUENCY; WHEREAS, IN THE MOUSE
5	NEURONS THAT ISN'T OBSERVED. AND MAYBE NOT
6	SURPRISINGLY, MICE AND HUMANS ARE THUS DIFFERENT.
7	SO THEN WHAT I'VE TRIED TO TELL YOU HERE
8	WITH THIS PART IS THAT HETEROZYGOUS HUMAN, BUT NOT
9	MOUSE NRXN1-MUTANT NEURONS EXHIBIT A ROBUST SYNAPTIC
10	IMPAIRMENT THAT COULD SERVE AS THE BASIS FOR
11	MECHANISTIC AND TRANSLATIONAL STUDIES WHICH ARE
12	HOPEFULLY GOING TO BE IDENTIFYING TARGETS THAT WE
13	CAN USE TO MORE SPECIFICALLY TREAT PATIENTS THAN THE
14	CURRENTLY AVAILABLE MEDICATIONS, WHICH ARE NOT
15	SUFFICIENT, WHICH ARE REALLY NOT WORKING WELL.
16	AND THE BIGGER PICTURE HERE IS THAT
17	MECHANISTIC STUDIES ON A DISEASE PROCESS ARE
18	ESSENTIAL FOR IDENTIFYING DRUG TARGETS AND
19	DEVELOPING THERAPIES. THE REASON, MAYBE ONE OF THE
20	REASONS WHY CIRM HASN'T GOTTEN APPLICATIONS IN THIS
21	AREA IS THAT, IN MY VIEW AT LEAST, WE ARE AT THE
22	BEGINNING OF AN UNDERSTANDING OF HOW
23	NEUROPSYCHIATRIC DISEASE ACTUALLY OCCURS. AND I
24	THINK THE SAME IS ACTUALLY TRUE FOR
25	NEURODEGENERATIVE DISEASES, BUT THAT'S A DIFFERENT

36
1	SUBJECT. WE KNOW THE GENES, BUT WE DON'T KNOW HOW
2	THE GENES ACTUALLY OPERATE IN THE DISEASE AND, IN
3	FACT, IN THE NORMAL. WE NEED STEM CELL BIOLOGY TO
4	BASICALLY DECONSTRUCT WHY CHANGES IN THESE GENES
5	PREDISPOSE, AND THEY ALWAYS PREDISPOSE, TO
6	NEUROPSYCHIATRIC DISORDERS, AND THEN WE CAN MOVE
7	FORWARD TOWARD STUDIES WHERE WE DEVELOP DRUGS AND
8	WHERE WE TRY TO PUT THESE DRUGS INTO PEOPLE.
9	LET ME TELL YOU I AM EXTREMELY INTERESTED
10	IN DEVELOPING DRUGS. I WORK WITH MULTIPLE COMPANIES
11	IN THIS ENDEAVOR, AND I KNOW FROM MY EFFORTS WITH
12	THESE COMPANIES HOW DIFFICULT IT IS TO DEVELOP DRUGS
13	WHEN YOU DON'T ACTUALLY UNDERSTAND THE DISEASE. AND
14	THIS IS REALLY WHAT WE WANT TO DO IN APPROACHING
15	THESE QUESTIONS USING HUMAN STEM CELL BIOLOGY.
16	HAPPY TO TAKE ANY QUESTIONS YOU MIGHT HAVE.
17	CHAIRMAN GOLDSTEIN: TOM, THANK YOU VERY
18	MUCH. LOVELY PIECE OF WORK, JUST EXTRAORDINARILY
19	IMPRESSIVE.
20	SO LET ME JUST ASK A SIMPLE QUESTION TO
21	START, WHICH IS WHAT FRACTION OF SCHIZOPHRENIA DO
22	YOU THINK IS ACCOUNTED FOR BY NEUREXIN MUTATIONS OR
23	PERHAPS PROTEINS THAT ARE INVOLVED IN WHAT YOU MIGHT
24	CALL THE NEUREXIN PATHWAY; THAT IS, WHAT THIS
25	MOLECULE IS ACTUALLY DOING AT THE SYNAPSE?

37

1	DR. SUDHOF: THE ACTUAL MUTATIONS ARE VERY
2	RARE. SO THERE'S THOUSANDS OF PATIENTS, BUT THERE'S
3	MILLIONS AND MILLIONS OF SCHIZOPHRENICS. AND SO IT
4	IS SUCH A DEVASTATING, PREVALENT DISEASE. IT IS
5	TRULY I DON'T KNOW I WAS ACTUALLY TRAINED AS
6	AN M.D. ORIGINALLY. IT IS ONE OF THE MOST
7	DEVASTATING DISEASES YOU CAN HAVE AS A HUMAN. IT IS
8	HORRIBLE FOR THE PEOPLE. AND THE SUICIDE RATE
9	AMONGST SCHIZOPHRENICS IS HIGHER THAN AMONG
10	DEPRESSION. IT IS VERY, VERY, VERY YEAH.
11	BUT HAVING SAID THAT, EVERYBODY IN THAT
12	FIELD, IN SCHIZOPHRENIA FIELD, IS NOW FOCUSING ON
13	NMDA RECEPTORS AS A KEY POINT. AND, IN FACT, EVEN
14	RARE MUTATIONS HAPPEN IN NMDA RECEPTORS. IN OTHER
15	WORK THAT WAS ACTUALLY DONE IN MICE, BUT WHICH WE
16	HOPE TO EXTEND TO HUMAN STEM CELLS, WE HAVE SHOWN
17	THAT NRXN1 IS A REGULATOR OF NMDA RECEPTORS. OKAY.
18	AND SO WE THINK THAT THIS WHOLE PATHWAY IS
19	ONE PATHWAY IN SCHIZOPHRENIA THAT GOES FROM
20	PRESYNAPTIC SITES, CASK, OR NEUREXINS, OR NMDA
21	RECEPTORS ALL THE WAY, KYNURENIC ACID, BUT THIS IS
22	ONE BIG, HUGE PATHWAY WHICH CAN BE HIT INDEPENDENTLY
23	BY DIFFERENT GENE MUTATIONS OR IN SPORADIC CASES BY
24	SOME NEURODEVELOPMENTAL ACCIDENT THAT MAY HAVE
25	HAPPENED FOR WHATEVER REASON THAT WE DON'T

38

1	UNDERSTAND THAT PREDISPOSES PATIENTS TO DEVELOP THE
2	DISEASE.
3	AND SO MY SPECULATION, AND THIS IS PURE
4	SPECULATION, THIS IS NOT SCIENTIFIC, THIS IS BASED
5	ON THE FACT THAT NMDA RECEPTORS ARE THE KEY CENTRAL
6	POINT OF SCHIZOPHRENIA CLINICALLY KETAMINE, FOR
7	EXAMPLE, IS AN EXAMPLE IS THAT THIS PATHWAY IS
8	LIKELY GOING TO BE INVOLVED BROADLY IN SCHIZOPHRENIC
9	PATIENTS FAR BEYOND THE NUMBERS THAT CARRY THE
10	ACTUAL NRXN1 MUTATIONS.
11	CHAIRMAN GOLDSTEIN: BOY. ABSOLUTELY
12	REMARKABLE. LET'S SEE. QUESTIONS FROM OTHER
13	MEMBERS OF THE GROUP PLEASE. PAT.
14	DR. LEVITT: HI, TOM.
15	DR. SUDHOF: HI, PAT.
16	DR. LEVITT: HOW ARE YOU? GOOD.
17	SO YOU MENTIONED AT THE BEGINNING, WHICH I
18	THINK IS REALLY AN IMPORTANT ISSUE TO ADDRESS, IS
19	THAT, AND THIS IS A POSTER CHILD FOR THE COMPLEXITY
20	IN WHICH YOU HAVE MUTATIONS IN THE SAME GENE, AND
21	YET THE PHENOTYPES CAN VARY QUITE A BIT. AND YOU
22	SHOWED THAT GRAPHIC THAT INCLUDED INTELLECTUAL
23	DISABILITY, AUTISM, SCHIZOPHRENIA, AND OTHER. SO
24	I'M WONDERING WHAT YOUR THOUGHTS ARE ABOUT HOW THIS
25	MIGHT WORK. YOU HAVE THESE FUNDAMENTAL CHANGES IN

1	EXCITATORY NEUROTRANSMISSION, PRESUMABLY IN SPECIFIC
2	CIRCUITS AND SPECIFIC NEURAL SUBTYPES. AND MAYBE
3	YOU THOUGHT MORE ABOUT WHY YOU WOULD GET THIS ARRAY
4	OF THE PHENOTYPES THAT WOULD BE EXPRESSED
5	DIFFERENTLY FROM ONE INDIVIDUAL TO THE NEXT.
6	DR. SUDHOF: IT'S A GREAT QUESTION,
7	SOMETHING THAT WE HAVE GRAPPLED WITH, I THINK THE
8	PERSON HAS GRAPPLED WITH AS WELL. MY PERSONAL
9	HYPOTHESIS IS THAT WE CAN LEARN A LOT FROM CANCER.
10	IN CANCER YOU HAVE A COMBINATION OF GENETIC
11	PREDISPOSITION WITH ACCIDENTS, AND THEY HAPPEN
12	STOCHASTICALLY. IN SCHIZOPHRENIA, I THINK IN
13	NEURODEVELOPMENTAL DISORDERS, THERE'S MANY, MANY
14	SPORADIC CASES. THEY HAVE VERY FEW PREDISPOSING
15	GENETIC FACTORS. GENETICS ONLY PROVIDES ONE PIECE.
16	WHEN AN ORGANISM DEVELOPS, THERE'S ALL KINDS OF
17	THINGS THAT CAN GO WRONG DURING DEVELOPMENT. THERE
18	ARE SO MANY POINTS OF DECISIONS WHERE THINGS CAN GO
19	WRONG.
20	I THINK ANY ACCIDENT, IF YOU WANT TO CALL
21	IT THAT, ANYTHING WHERE SOMETHING HAPPENS DURING
22	DEVELOPMENT WHERE THIS PATHWAY IS AFFECTED WILL
23	PREDISPOSE TO SCHIZOPHRENIA. SO I DON'T THINK THAT
24	GENETICS ALONE WILL EXPLAIN NEUROPSYCHIATRIC
25	DISORDERS. I THINK GENETICS TEACHES US TO LOOK FOR

40

1	WHAT PATHWAYS TO STUDY AND TO TRY TO IDENTIFY, BASED
2	ON THE GENETIC PATHWAYS, TARGETS THAT WE CAN USE TO
3	DEVELOP DRUGS. BUT IN THE HUMAN CLINICAL SITUATION,
4	I BELIEVE, IN ADDITION TO THE GENETICS, THERE'S
5	ALWAYS A NONGENETIC COMPONENT, A DEVELOPMENTAL
6	COMPONENT IN THIS CASE, AND WE NEED TO UNDERSTAND
7	BETTER THERE COULD BE ENVIRONMENTAL, FOR EXAMPLE,
8	VERY WELL POSSIBLE. IT COULD BE AN INFLAMMATORY
9	EVENT DURING PREGNANCY, FOR EXAMPLE, WHICH IS
10	ABSOLUTELY, I THINK, PLAUSIBLE. IT COULD BE
11	SOMETHING ELSE EARLY IN CHILDHOOD. YEAH. I THINK
12	IT'S NOT JUST GENETICS.
13	DR. LEVITT: THANK YOU.
14	CHAIRMAN GOLDSTEIN: THAT'S REASONABLY
15	TYPICAL FOR A LOT OF THESE KINDS OF DISORDERS, THAT
16	YOU HAVE ABOUT HALF OF THE PHENOTYPE CONTROLLED BY
17	THE GENETIC CONSTITUTION OF THE INDIVIDUAL AND THE
18	OTHER HALF OF THE PHENOTYPE COMING FROM
19	ENVIRONMENTAL FACTORS THAT, AS YOU NOTE, ARE REALLY
20	POORLY UNDERSTOOD AND HARD TO GET A HANDLE ON.
21	
21	ON THE OTHER HAND, IF HALF OF THE
22	ON THE OTHER HAND, IF HALF OF THE PHENOTYPIC BEHAVIOR COMES FROM THIS COLLECTION OF
22 23	ON THE OTHER HAND, IF HALF OF THE PHENOTYPIC BEHAVIOR COMES FROM THIS COLLECTION OF GENES, THAT IS HOPEFUL FOR THERAPY DISCOVERY. I
21 22 23 24	ON THE OTHER HAND, IF HALF OF THE PHENOTYPIC BEHAVIOR COMES FROM THIS COLLECTION OF GENES, THAT IS HOPEFUL FOR THERAPY DISCOVERY. I MEAN IT'S GIVEN YOU A CLUE ABOUT WHERE TO LOOK AND
22 23 24 25	ON THE OTHER HAND, IF HALF OF THE PHENOTYPIC BEHAVIOR COMES FROM THIS COLLECTION OF GENES, THAT IS HOPEFUL FOR THERAPY DISCOVERY. I MEAN IT'S GIVEN YOU A CLUE ABOUT WHERE TO LOOK AND WHAT TO MODULATE. SO WHILE COMPLICATED, IT'S A

41

1	TERRIFIC OPPORTUNITY FOR, AS YOU POINT OUT, A
2	TERRIBLE DISORDER.
3	WE ARE AT ONE ZERO ZERO, TOM. YOU'RE FREE
4	FOR THE TIME BEING, BUT I RESERVE THE RIGHT FOR US
5	TO COME BACK TO SEEK ADDITIONAL ADVICE FROM YOU.
6	DR. SUDHOF: PLEASE DO. ANYTHING I CAN
7	DO. I THINK THIS IS SO IMPORTANT FOR CALIFORNIA AND
8	ACTUALLY FOR THE PATIENTS. I DO THINK THAT WE NEED
9	TO MAKE PROGRESS.
10	CHAIRMAN GOLDSTEIN: GREAT.
11	DR. SUDHOF: THANK YOU.
12	CHAIRMAN GOLDSTEIN: THANK YOU, TOM.
13	OKAY. NEXT UP, KRISTEN, CAN YOU SHED SOME
14	LIGHT ON THESE DISORDERS FOR US PLEASE?
15	DR. BRENNAND: YEAH. I'M REALLY, REALLY
16	EXCITED TO GET THE CHANCE TO CHAT WITH THIS GROUP.
17	I'VE GOT TO SAY I WAS ONE OF THE FIRST CLASS OF CIRM
18	POST-DOC FELLOWS BACK IN 2008. AND CIRM HAS ALWAYS
19	BEEN A DEAR PART OF MY TRAINING IN MY COMMUNITY.
20	AND SO WHEN LARRY ASKED ME TO SPEAK WITH YOU, I
21	SHOULD ADD HE GAVE A VERY LONG LIST OF QUESTIONS
22	THAT HE WANTED US TO ADDRESS IN JUST 15 MINUTES.
23	AND SO I'M GOING TO DO MY BEST TO HIT A FEW OF THEM
24	IN THE TALK, AND THEN POST THE REST OF THEM AT THE
25	END SO WE CAN DISCUSS THEM AND MAKE SURE WE HIT

42

EVERYTHING THAT HE ASKED. 1 AND SO I'M GOING TO TALK TO YOU ABOUT SOME 2 3 OF THE WORK THAT MY LAB HAS BEEN DOING USING STEM CELLS TO EXPLORE THE GENETICS OF NEUROPSYCHIATRIC 4 5 DISORDERS. AND THE FIRST THING THAT I THINK IS SO IMPORTANT TO TALK ABOUT IS HOW COMMON THESE 6 7 DISORDERS ARE. SO ONE IN FIVE PEOPLE ACROSS THE U.S. WILL 8 9 EXPERIENCE A PSYCHIATRIC DISORDER THIS YEAR. YOUR LIFETIME RISK IS ACTUALLY ONE IN THREE. AND SO IT'S 10 SO IMPORTANT THAT WE TALK ABOUT THESE DISORDERS AND 11 MOVE THEM OUT OF STIGMA AND INTO TREATMENT. 12 NOT JUST ARE THEY COMMON; THEY'RE SEVERE. SO IF YOU 13 LOOK AT THE DISABILITY ADJUSTED LIFE YEARS THAT WE 14 LOSE BECAUSE OF PSYCHIATRIC DISORDERS, THEY'RE 15 ACTUALLY MORE IMPACTFUL THAN THINGS LIKE DIABETES 16 17 AND NEURODEGENERATIVE DISEASE THAT I KNOW CIRM HAS DONE A LOT TO STUDY. THESE ARE IN THE TOP FIVE 18 19 CAUSES OF DISABILITY WORLDWIDE. 20 THEY ARE VERY HETEROGENEOUS. WHEN WE TALK ABOUT NEURODEVELOPMENTAL AND PSYCHIATRIC DISORDERS, 21 22 WE ARE TALKING ABOUT A SPECTRUM THAT STARTS WITH 23 AUTISM AND DEVELOPMENTAL DELAY, INCLUDES PSYCHOSIS, 24 BIPOLAR, EATING DISORDERS, ANXIETY, DEPRESSION, AND 25 SUBSTANCE ABUSE. AND SO WE HAVE A HUGE COLLECTION

43

1	OF PRESENTATIONS HERE. AND WHAT I REALLY WANT YOU
2	TO SIT ON FOR A MOMENT IS THESE TWO REALLY IMPORTANT
3	CLINICAL FACTS.
4	AND THE FIRST IS THAT THE DELAY, THE
5	AVERAGE DELAY BETWEEN SYMPTOM ONSET AND TREATMENT IN
6	THE U.S. IS EIGHT TO TEN YEARS. PEOPLE ARE
7	EXPERIENCING AND SUFFERING FROM THE DISABILITY THAT
8	COMES WITH PSYCHIATRIC DISORDERS FOR UP TO TEN YEARS
9	BEFORE THEY'RE GETTING ANY HELP WITH THE SYMPTOMS.
10	AND SECOND OF ALL, EVEN AFTER DIAGNOSIS, MANY PEOPLE
11	ARE NOT BEING TREATED. THE PERCENTAGE OF ADULTS
12	WITH A PSYCHIATRIC DISORDER WHO DID NOT RECEIVE
13	TREATMENT LAST YEAR WAS 60 PERCENT.
14	THIS REFLECTS A LOT OF TRUTHS, ONE THAT WE
15	ARE BAD AT DIAGNOSING, TWO, THAT OUR DRUGS TEND TO
16	BE REALLY TERRIBLE AND THEY HAVE A LOT OF SIDE
17	EFFECTS, AND SOME PATIENTS CHOOSE NOT TO TAKE THEM;
18	THREE, THAT SOME OF THE DRUGS ARE JUST THERE ARE
19	ABOUT A THIRD OF CASES OF SCHIZOPHRENIA AND BIPOLAR,
20	FOR EXAMPLE, THAT IS NOT TREATMENT RESPONSIVE. SO
21	THERE'S A LACK OF TREATMENTS, A LACK OF GOOD
22	TREATMENTS, A LACK OF TREATMENTS WITHOUT SIDE
23	EFFECTS, AND THEN A LACK OF ACCESS.
24	PATIENTS WITH PSYCHIATRIC DISORDERS ARE
25	OVERREPRESENTED IN OUR CRIMINAL, HOMELESS, AND
	44

1	INSTITUTIONALIZED POPULATIONS AND UNDERREPRESENTED
2	IN OUR DAY-TO-DAY LIVES.
3	THE GENETICS, AND TOM AND LARRY HAVE
4	HINTED AT THIS ALREADY, BUT THE COMPLEX GENETIC RISK
5	ARCHITECTURE IS VERY FAR FROM DIAGNOSTIC OR
6	PREDICTIVE.
7	I'LL START HERE WITH SCHIZOPHRENIA BECAUSE
8	IT'S WHAT MY LAB FOCUSES ON, BUT ALSO IT'S THE MOST
9	HERITABLE PSYCHIATRIC DISORDER, WHICH IS A BIG PART
10	OF WHY MY LAB FOCUSES ON IT. SO THE HERITABILITY
11	FROM TWIN STUDIES FOR SCHIZOPHRENIA IS ACTUALLY
12	ESTIMATED AT 80 PERCENT. SO A HUGE AMOUNT OF
13	WHETHER OR NOT PEOPLE HAVE SCHIZOPHRENIA CAN BE
14	PREDICTED OR OUGHT TO BE ABLE TO BE PREDICTED FROM
15	THE DNA THAT THEY ARE BORN WITH.
16	NOW, THAT'S NOT TO SAY THAT WE CAN DO THAT
17	YET. WE DON'T UNDERSTAND, IN FACT, MOST OF THE
18	HERITABILITY FOR SCHIZOPHRENIA. SO ABOUT A THIRD OF
19	THAT KNOWN HERITABILITY WE CAN EXPLAIN FROM
20	GENOMEWIDE ASSOCIATION STUDIES. BUT TWO-THIRDS OF
21	IT IS TERMED MISSING HERITABILITY. WE KNOW IT MUST
22	BE THERE FROM TWIN STUDIES, BUT WE DON'T KNOW HOW TO
23	EXPLAIN IT YET.
24	NOW, IF WE EXPAND THIS ACROSS THE SPECTRUM
25	OF PSYCHIATRIC DISORDERS I WANT YOU TO SEE. SO AT
	45

1	THE TOP WE HAVE SCHIZOPHRENIA, AUTISM, ADHD,
2	BIPOLAR. THEY'RE EXTREMELY HERITABLE. BUT
3	THREE-QUARTERS ARE HERITABILITY; BUT ACROSS ALL OF
4	THEM, OUR ABILITY TO EXPLAIN THAT HERITABILITY IS
5	ABOUT A THIRD TO A QUARTER.
6	THE OTHER END OF THE SPECTRUM, WE HAVE
7	ANXIETY DISORDER, DEPRESSION, PTSD. THESE ARE
8	EXTREMELY DRIVEN BY ENVIRONMENT. NOW, THIS MAKES
9	SENSE. PTSD IS DEFINED BY BEING A DISORDER THAT
10	OCCURS IN RESPONSE TO A TRAUMATIC EVENT. SO THERE
11	HAS TO BE A HUGE ENVIRONMENTAL COMPONENT HERE.
12	AND SO ONE OF LARRY'S QUESTIONS WAS REALLY
13	WHICH DISEASES ARE APPROPRIATE FOR STEM CELL MODELS.
14	AND I THINK IT DEPENDS A LOT ON THE EXTENT TO WHICH
15	WE UNDERSTAND THE GENETICS AND/OR THE EXTENT TO
16	WHICH WE UNDERSTAND THE BIOLOGICAL EFFECTORS DRIVING
17	THE ENVIRONMENTAL EXPOSURES.
18	BUT I'M GOING TO DIVE IN, BACK-DIVE TO
19	SCHIZOPHRENIA HERE TO TAKE YOU THROUGH SOME EXAMPLES
20	OF HOW WE CAN USE STEM CELLS, ESPECIALLY WHEN
21	COMBINED WITH CRISPR, TO INVESTIGATE A PSYCHIATRIC
22	DISORDER.
23	AND SO HERE'S EVERYTHING THAT WE KNOW
24	ABOUT THE GENETICS OF SCHIZOPHRENIA AS OF LATE LAST
25	YEAR. SO THERE ARE THREE TYPES OF VARIANTS ON THIS
	46

1	PLOT. THESE GREEN ONES WERE ACTUALLY THE FIRST ONES
2	LINKED TO SCHIZOPHRENIA. THESE ARE COPY NUMBER
3	VARIANTS. THEY TEND TO BE VERY LARGE DELETIONS OR
4	DUPLICATIONS. HERE'S 2P16.3, THE ONE THAT THOMAS
5	JUST SPOKE WITH US ABOUT. SO THIS PLOT IS PLOTTING
6	THE ODDS RATIOS OR THE PENETRANCE OF THE VARIANT,
7	HOW LIKELY YOU ARE NOT TO BE A CONTROL IF YOU
8	INHERIT THIS VARIANT. WHEREAS, THE X AXIS IS
9	LOOKING AT HOW COMMON IT IS IN THE POPULATION. AND
10	SO THIS 3Q29 DELETION IS THE MOST PENETRANT. YOU
11	ARE INCREDIBLY UNLIKELY TO BE A CONTROL IF YOU
12	INHERIT IT, BUT IT'S EXTREMELY RARE IN LIKE LESS
13	THAN A HUNDREDTH OF A PERCENTAGE OF PATIENTS.
14	IN AGGREGATE, THESE GREEN DOTS EXPLAIN
15	ABOUT 5 PERCENT OF CASES. SO THEY ARE NOT
16	EXPLAINING THE MAJORITY OF THE GENETICS, BUT THEY
16 17	EXPLAINING THE MAJORITY OF THE GENETICS, BUT THEY ARE A VERY SIGNIFICANT RISK GENE. THEY ALSO CAN BE
16 17 18	EXPLAINING THE MAJORITY OF THE GENETICS, BUT THEY ARE A VERY SIGNIFICANT RISK GENE. THEY ALSO CAN BE PLEIOTROPIC. SO IF YOU HAVE, FOR EXAMPLE, A
16 17 18 19	EXPLAINING THE MAJORITY OF THE GENETICS, BUT THEY ARE A VERY SIGNIFICANT RISK GENE. THEY ALSO CAN BE PLEIOTROPIC. SO IF YOU HAVE, FOR EXAMPLE, A DELETION IN 22Q11, YOU'RE EXTREMELY LIKELY TO HAVE
16 17 18 19 20	EXPLAINING THE MAJORITY OF THE GENETICS, BUT THEY ARE A VERY SIGNIFICANT RISK GENE. THEY ALSO CAN BE PLEIOTROPIC. SO IF YOU HAVE, FOR EXAMPLE, A DELETION IN 22Q11, YOU'RE EXTREMELY LIKELY TO HAVE INTELLECTUAL DISABILITY, BUT ONLY ABOUT ONE-THIRD
16 17 18 19 20 21	EXPLAINING THE MAJORITY OF THE GENETICS, BUT THEY ARE A VERY SIGNIFICANT RISK GENE. THEY ALSO CAN BE PLEIOTROPIC. SO IF YOU HAVE, FOR EXAMPLE, A DELETION IN 22Q11, YOU'RE EXTREMELY LIKELY TO HAVE INTELLECTUAL DISABILITY, BUT ONLY ABOUT ONE-THIRD LIKELY TO HAVE SCHIZOPHRENIA. THE DELETIONS
16 17 18 19 20 21 22	EXPLAINING THE MAJORITY OF THE GENETICS, BUT THEY ARE A VERY SIGNIFICANT RISK GENE. THEY ALSO CAN BE PLEIOTROPIC. SO IF YOU HAVE, FOR EXAMPLE, A DELETION IN 22Q11, YOU'RE EXTREMELY LIKELY TO HAVE INTELLECTUAL DISABILITY, BUT ONLY ABOUT ONE-THIRD LIKELY TO HAVE SCHIZOPHRENIA. THE DELETIONS ASSOCIATED WITH NRXN1 THAT THOMAS WAS TALKING ABOUT,
16 17 18 19 20 21 22 23	EXPLAINING THE MAJORITY OF THE GENETICS, BUT THEY ARE A VERY SIGNIFICANT RISK GENE. THEY ALSO CAN BE PLEIOTROPIC. SO IF YOU HAVE, FOR EXAMPLE, A DELETION IN 22Q11, YOU'RE EXTREMELY LIKELY TO HAVE INTELLECTUAL DISABILITY, BUT ONLY ABOUT ONE-THIRD LIKELY TO HAVE SCHIZOPHRENIA. THE DELETIONS ASSOCIATED WITH NRXN1 THAT THOMAS WAS TALKING ABOUT, THEY'RE SIGNIFICANTLY ASSOCIATED WITH SCHIZOPHRENIA,
16 17 18 19 20 21 22 23 23 24	EXPLAINING THE MAJORITY OF THE GENETICS, BUT THEY ARE A VERY SIGNIFICANT RISK GENE. THEY ALSO CAN BE PLEIOTROPIC. SO IF YOU HAVE, FOR EXAMPLE, A DELETION IN 22Q11, YOU'RE EXTREMELY LIKELY TO HAVE INTELLECTUAL DISABILITY, BUT ONLY ABOUT ONE-THIRD LIKELY TO HAVE SCHIZOPHRENIA. THE DELETIONS ASSOCIATED WITH NRXN1 THAT THOMAS WAS TALKING ABOUT, THEY'RE SIGNIFICANTLY ASSOCIATED WITH SCHIZOPHRENIA, BUT ALSO AUTISM, EPILEPSY, OCD. AND SO YOU SEE
16 17 18 19 20 21 22 23 24 25	EXPLAINING THE MAJORITY OF THE GENETICS, BUT THEY ARE A VERY SIGNIFICANT RISK GENE. THEY ALSO CAN BE PLEIOTROPIC. SO IF YOU HAVE, FOR EXAMPLE, A DELETION IN 22Q11, YOU'RE EXTREMELY LIKELY TO HAVE INTELLECTUAL DISABILITY, BUT ONLY ABOUT ONE-THIRD LIKELY TO HAVE SCHIZOPHRENIA. THE DELETIONS ASSOCIATED WITH NRXN1 THAT THOMAS WAS TALKING ABOUT, THEY'RE SIGNIFICANTLY ASSOCIATED WITH SCHIZOPHRENIA, BUT ALSO AUTISM, EPILEPSY, OCD. AND SO YOU SEE THESE PLEIOTROPIC EFFECTS OF THESE RARE VARIANTS

47

1	LIKELY CAUSED BY THEIR INTERACTION WITH THE OTHER
2	VARIANTS YOU MIGHT INHERIT.
3	SO THESE RED VARIANTS ARE ALSO RARE.
4	THEY'RE, IN FACT, MORE RARE THAN THE GREEN VARIANTS
5	THAT ARE LEFT SHIFT IN THIS PLOT. THEY'RE NOW
6	PROTEIN-TRUNCATING VARIANTS. THEY'VE ONLY BEEN
7	IDENTIFIED IN THE LAST YEAR, SO THEY'RE MUCH NEWER
8	TO US. THEY'RE JUST AS PENETRANT AS THESE COPY
9	NUMBER VARIANTS, BUT IN A SMALLER PERCENTAGE OF
10	PATIENTS.
11	AND THEN, FINALLY, OVER HERE ON THE
12	OPPOSITE SIDE OF THE GRAPH, WE HAVE THESE COMMON
13	VARIANTS. AT PRESENT THE MOST RECENT GENETIC STUDY
14	HAS ABOUT 250 OF THESE COMMON VARIANTS. EACH OF
15	THEM CONFERS PERHAPS A 1-PERCENT INCREASED RISK OF
16	SCHIZOPHRENIA. AND SO IN ISOLATION THESE VARIANTS
17	DO ALMOST NOTHING TO PREDICT OR MAYBE EVEN CAUSE
18	DISEASE; BUT IN AGGREGATE, WHEN YOU CONSIDER THE
19	DOZENS THAT EACH OF US INHERIT, THE INTERACTIONS
20	BETWEEN THEM DO LEAD TO LARGE PHENOTYPIC EFFECTS.
21	AND SO DIVING INTO THESE COMMON VARIANTS
22	HERE, THIS IS THE MOST RECENT GWAS FOR
23	SCHIZOPHRENIA. THE Y AXIS HERE IS THE P-VALUE, SO
24	THE LIKELIHOOD THAT A VARIANT IS ASSOCIATED WITH
25	SCHIZOPHRENIA. AND THIS RED LINE IS GENOMEWIDE

48

1	SIGNIFICANCE. SO EVERYTHING ABOVE THAT LINE IN THIS
2	MANHATTAN PLOT IS SIGNIFICANTLY ASSOCIATED WITH
3	SCHIZOPHRENIA.
4	NOW, THIS IS A PLOT OF SINGLE NUCLEOTIDE
5	POLYMORPHISMS. YES, SOME OF THESE LOOK LIKE LINES,
6	BUT SOMETIMES IT'S MORE CLEAR THAT THEY'RE JUST
7	COLLECTIONS OF VARIANTS THAT MAY OR MAY NOT BE CLOSE
8	TOGETHER IN SPACE. SOMETIMES WE CAN ENCOMPASS
9	KILOBASES OF SPACE IN BETWEEN THE VARIANTS AT A
10	GIVEN LOCI.
11	SO HOW DO YOU TRANSLATE A BIG GENETIC PLOT
12	LIKE THIS INTO SCHIZOPHRENIA? WHAT ARE SOME BIG
13	CHALLENGES? FIRST OF ALL, EACH OF THESE LOCI,
14	AGAIN, CAN BE COMPRISED OF DOZENS OR HUNDREDS OF
15	THOUSANDS OF SINGLE NUCLEOTIDE POLYMORPHISMS. AND
16	RESOLVING WHICH ONE OR ONES IS LINKED TO DISEASE
17	CAUSALLY IS CHALLENGING. FIGURING OUT WHICH GENES
18	ARE THE TARGETS OF EACH OF THESE LOCI IS MORE
19	CHALLENGING. I'M SORRY. THE PATHWAYS THAT ARE
20	IMPACTED DOWNSTREAM OF THESE NONCODING SNP'S IS EVEN
21	HARDER. SO TRANSLATING GENETIC HITS TO BIOLOGY IS
22	REALLY CHALLENGING WHEN THEY'RE NOT IN THE CODING
23	REGION. IT'S VERY EASY TO ASSIGN A DELETION OR A
24	TRUNCATION IN THE CODING GENE TO THE GENE TARGET.
25	IT'S VERY HARD TO ASSIGN A NONCODING PUTATIVE

49

1	REGULATORY ELEMENT TO A DOWNSTREAM GENE TARGET.
2	SECOND OF ALL, NONE OF THESE VARIANTS ACT
3	IN ISOLATION. AGAIN, ALL OF US INHERITED DOZENS OF
4	THEM. PATIENTS MIGHT HAVE JUST INHERITED A DOZEN
5	MORE. SO THE INTERACTIONS BETWEEN THESE VARIANTS IS
6	CRITICALLY IMPORTANT AND MIGHT ACTUALLY BE THE
7	ANSWER TO THIS MISSING HERITABILITY.
8	AND FINALLY, HOW DOES ALL OF THIS
9	TOGETHER, THE INTERACTION OF RARE VARIANTS AND
10	COMMON VARIANTS AND COMMON VARIANTS AND COMMON
11	VARIANTS WITH COMMON VARIANTS AND COMMON VARIANTS
12	WITH ENVIRONMENT, HOW DOES THIS IMPACT CLINICAL
13	PENETRANCE AND EXPRESSIVITY? AND SO THESE ARE
14	EXACTLY THE QUESTIONS MY LAB HAS BEEN ASKING.
15	I DO WANT TO BACK UP AND FOR, LIKE, ONE
16	MINUTE TALK TO YOU ABOUT SCHIZOPHRENIA AND WHAT WE
17	KNOW FROM HUMAN STUDIES. MUCH LIKE
18	NEURODEGENERATIVE DISEASE, POSTMORTEM STUDIES HAVE
19	LONG SHOWN THAT THE BRAINS OF INDIVIDUALS WITH
20	SCHIZOPHRENIA ARE SMALLER. WE'VE KNOWN THIS FROM
21	AUTOPSY STUDIES WHERE THE BRAINS WERE WEIGHED AND
22	WHERE WE CERTAINLY KNOW THIS FROM BRAIN IMAGING
23	SCANS. HERE THIS IS A STUDY BY JUDY RAPOPORT WHERE
24	THE REGIONS IN RED ARE SMALLER. BUT UNLIKE
25	NEURODEGENERATIVE DISEASE, THE REGIONS ARE NOT

50

1	SMALLER BECAUSE THE NEURONS ARE DEAD OR THE CELLS
2	ARE MISSING. THE NEURONS THEMSELVES ARE SMALLER.
3	SO WE KNOW FROM POSTMORTEM PATHOLOGY THERE'S FEWER
4	DENDRITES, SO FEW BRANCHING FROM NEURONS AND FEWER
5	CONNECTIONS BETWEEN THEM, FEWER SYNAPSES IN
6	POSTMORTEM BRAINS.
7	AND SO WE CAN SEE AT END-STAGE DISEASE
8	HUMAN BRAINS ARE LESS WELL CONNECTED, BUT THERE ARE
9	SO MANY QUESTIONS THAT WE DON'T KNOW. WHICH CELL
10	TYPE IS IMPACTED FIRST IN SCHIZOPHRENIA? WE HAD
11	LONG ASSUMED THAT NEURONS FOR THE CELL TYPE OF
12	ORIGIN IN ALZHEIMER'S, AND THE GENETIC STUDIES HAVE
13	MUCH MORE RECENTLY TAUGHT US THAT MICROGLIA ARE
14	HUGELY DRIVING THE SUBSEQUENT NEURONAL DEATH.
15	LIKEWISE, IN SCHIZOPHRENIA WE HAVE FOR
16	DECADES TREATED DOPAMINE RECEPTOR ACTIVITY, BUT THE
17	GENETIC STUDIES DON'T KEEP HIGHLIGHTING DOPAMINE
18	ROBUSTLY. INSTEAD, THEY'RE HITTING GLUTAMATERGIC
19	AND GABAMINURGIC SIGNALING. SO ARE THOSE THE CELL
20	TYPES OF ORIGIN FOR DISEASE? AND IF THEY ARE, WHEN
21	IN DEVELOPMENT ARE THEY BEING IMPACTED? AGAIN, THE
22	GENETICS STUDIES SUGGEST IT'S SECOND AND THIRD
23	TRIMESTER, BUT THE THINGS THAT ARE GOING WRONG IN
24	THE BRAIN OF SOMEBODY WHO'S GOING TO HAVE
25	SCHIZOPHRENIA THREE DECADES FROM NOW OR TWO DECADES

51

1	FROM NOW ARE GOING WRONG IN UTERO.
2	WHY DO WE KNOW SO LITTLE? WELL, JUST LIKE
3	IN NEURODEGENERATION, BUT UNLIKE IN CANCER, THERE'S
4	JUST INSUFFICIENT LIVE HUMAN TISSUE FOR STUDIES OF
5	PSYCHIATRIC DISORDER RISK AND DRUG DISCOVERY. AND
6	WHILE MOUSE MODELS HAVE BEEN HUGELY INFORMATIVE
7	ACROSS A NUMBER OF DISEASES, I LIKE TO JOKE THAT I
8	WASN'T TRAINED AS A NEUROSCIENTIST, AND EVEN I CAN
9	TELL THE DIFFERENCE BETWEEN THIS MOUSE BRAIN AND
10	THIS HUMAN BRAIN. AND THAT REMAINS TRUE WHEN WE
11	SCALE FOR SIZE.
12	NOW, MOUSE MODELS ARE REALLY GOOD AT
13	LOOKING AT THE COMPLEX INTERACTIONS OF GENES,
14	CIRCUITS, AND BEHAVIORS. WHAT HAPPENS IF YOU KNOCK
15	OUT THIS GENE ON THAT CIRCUIT AND THAT BEHAVIORAL
16	TASK? BUT LIKE ALL MODELS, THEY HAVE LIMITATIONS.
17	AND I THINK TWO OF THE MAJOR LIMITATIONS OF MOUSE
18	MODELS ARE THEY POORLY CAPTURE THE IMPACT OF
19	NONCODING COMMON VARIANTS BECAUSE THEY'RE
20	INFREQUENTLY CONSERVED BETWEEN RODENTS AND HUMANS.
21	I JUST SHOWED YOU THAT MUCH, IN FACT, MOST
22	OF THE GENETIC RISK THAT WE HAVE IDENTIFIED TO DATE
23	FOR PSYCHIATRIC DISEASES IS IN THE FORM OF NONCODING
24	COMMON VARIANTS THAT ARE INFREQUENTLY CONSERVED IN
25	RODENTS. AND SECOND OF ALL, IT'S VERY DIFFICULT TO

52

1	STUDY THE INTERACTIONS BETWEEN VARIANTS IN MICE
2	BECAUSE, ONE, IT'S DIFFICULT TO ENGINEER MANY
3	VARIANTS. AND SECOND, IT'S EVEN HARDER TO BREED
4	THEM TRUE.
5	SO WHAT DO I THINK STEM CELLS ARE USEFUL
6	FOR TEACHING US ABOUT PSYCHIATRIC DISORDERS? WELL,
7	I THINK THERE'S TWO WAYS THAT THEY'RE REALLY GOING
8	TO HELP ADVANCE OUR UNDERSTANDING AND TREATMENT OF
9	PSYCHIATRIC DISORDERS. AND THE FIRST IS IMPROVING
10	DIAGNOSIS. THERE ARE NO BLOOD TESTS TO DIAGNOSE
11	PSYCHIATRIC DISORDERS. THERE'S NO BIOPSIES.
12	THERE'S, IN FACT, NO BRAIN IMAGING SCANS. SO WE
13	TALK A LOT ABOUT HOW THE TOOLS ARE DIFFICULT IN
14	NEURODEGENERATION TO DIAGNOSE. WELL, THEY'RE
15	ARGUABLY MUCH FURTHER BEHIND IN PSYCHIATRY. IT CAN
16	BE EXTREMELY CHALLENGING TO ACCURATELY DIAGNOSE
17	SOMEBODY WITHIN YEARS OF SYMPTOM ONSET. AND SECOND
18	OF ALL, THERE'S A LACK OF ADEQUATE TREATMENTS FOR
19	PSYCHIATRIC DISORDERS AND, MORE SO, A LACK OF
20	METHODS TO PREVENT DISORDER. AND IF WE COULD GET
21	BETTER AT DIAGNOSIS, IF WE COULD PREDICT WHO WAS AT
22	HIGH RISK PRIOR TO SYMPTOM ONSET, I THINK WE REALLY
23	ARE CHANGING THE WINDOW OF THERAPEUTIC INTERVENTION.
24	JUST LIKE I'D MUCH RATHER TREAT MY FUTURE
25	ALZHEIMER'S WHEN I'M 40 OR 50 WITH TARGETING

1	ABERRANT MICROGLIA FUNCTION THAN WHEN I'M 80 OR 90
2	AND FACING SEVERE COGNITIVE DEFICITS AND NEURONAL
3	DEATH. LIKEWISE, WE'D LIKE TO TREAT PSYCHIATRIC
4	DISORDERS PRIOR TO SYMPTOM ONSET AND PRIOR TO THIS
5	REINFORCEMENT OF ABERRANT CIRCUIT FUNCTION.
6	AND SO WHAT I'M REALLY TALKING ABOUT IN
7	THIS PRECISION MEDICINE, THAT IF WE COULD UNDERSTAND
8	WHY ALL OF THE DOZENS OF RISK VARIANTS THAT A GIVEN
9	PATIENT HAS INHERITED, WHAT THEY DO AND HOW THEY
10	INTERACT WITH EACH OTHER, THEN MAYBE WE CAN IDENTIFY
11	THE RIGHT, THE PRECISE THERAPEUTIC TO INTERVENE
12	WITH. AND I THINK THE BIG DIFFERENCE HERE IN
13	PSYCHIATRY VERSUS NEURODEGENERATION IS THAT GOAL
14	COULD JUST BE PHARMACOLOGY. WE DON'T NECESSARILY
15	NEED CELL REPLACEMENT THERAPY TO DO BETTER BY OUR
16	PATIENTS IN PSYCHIATRY. WE DON'T EVEN NEED A CURE.
17	WE JUST NEED TO LESSEN THE IMPACT OF THEIR SYMPTOMS.
18	AND SO THINKING ABOUT HOW WE CAN USE STEM
19	CELLS TO UNDERSTAND THE COMPLEX GENETICS OF
20	SCHIZOPHRENIA, I WANT TO SHOW YOU ONE EXAMPLE OF HOW
21	WE TRACK GENOTYPE TO PHENOTYPE. THIS IS WORK LED BY
22	A FORMER POST-DOC OF MINE, NADINE SCHRODE.
23	WE LOOKED AT THE GWAS BACK IN 2015, AND WE
24	WERE TRYING TO PRIORITIZE WHICH LOCI TO EDIT USING
25	CRISPR, NONCODING SNP. THIS WAS BACK WHEN CRISPR
	54

1	EDITING REMAINED REALLY CHALLENGING. WHICH ONE DO
2	YOU PICK? DO YOU PICK THE TALLEST ONE? DO YOU PICK
3	THE SPARSEST ONE? AND IN TRUTH WE WORKED REALLY
4	CLOSELY WITH GENETICISTS TO UNDERSTAND WHICH ONE
5	THEY WOULD PICK. AND THEY WERE REALLY EXCITED ABOUT
6	THIS SNP OVER HERE IN THE THREE PRIME UTR OF A GENE
7	CALLED FURIN. AND THE REASON THEY WERE EXCITED
8	ABOUT IT IS SOMETHING HAPPENED AT THIS SNP THAT
9	DIDN'T HAPPEN ANYWHERE ELSE IN THE GWAS PLOT.
10	SO HERE IN THIS PLOT WE'VE GOT THE Y AXIS
11	BEING P-VALUE, SAME AS OVER HERE. SO THE STRENGTH
12	OF THE ASSOCIATION BETWEEN A GIVEN VARIANT AND
13	SCHIZOPHRENIA DIAGNOSIS. BUT WE HAVE CROSSED IT
14	WITH A BRAIN EQTLKEY VALUE, WHICH IS TO SAY WHAT IS
15	THE PROBABILITY THAT ANY GIVEN SNP AT THAT LOCI IS
16	REGULATING EXPRESSION OF THE NEAREST TARGET GENE?
17	AND WHAT YOU GET AT THIS LOCUS IS A SINGLE SNP IN
18	THE TOP RIGHT-HAND CORNER, A SNP TERMED RS4702. SO
19	THIS SNP WAS THE SNP MOST LIKELY TO BE CONFERRING
20	RISK FOR SCHIZOPHRENIA AND ALSO MOST LIKELY TO BE
21	REGULATING EXPRESSION OF FURIN.
22	AND SO THIS WAS THE SNP THAT WE CHOSE FOR
23	CRISPR EDITING. THE SECOND BEST CANDIDATE GENE, THE
24	SECOND BEST ONE LOOKED LIKE THIS WHERE WE'VE GOT 20
25	OR 30 DOTS IN THE TOP RIGHT-HAND CORNER. AND SO IT

1	WASN'T CLEAR TO US WHETHER ALL OF THESE SNP'S WERE
2	CONFERRING 1 OR 2 PERCENT OF THE RISK AT THIS LOCI
3	OR WHETHER THERE WAS ONE REALLY IMPORTANT SNP IN
4	THAT CLUSTER THAT WE JUST COULDN'T DISCERN YET. AND
5	SO WE'LL USE CRISPR EDITING TO LOOK AT RS4702, AND
6	WE'LL USE A DIFFERENT CRISPR TOOL, CRISPR
7	ACTIVATION, TO LOOK AT SNAP91.
8	AND SO THIS WAS THE EDIT THAT NADINE
9	ACHIEVED. SHE STARTED, I BELIEVE, TWO CONTROLLED
10	DONORS, MANIPULATED THE AA GENOTYPE TO A GG
11	GENOTYPE, AND COULD SHOW THAT THE GG SAT WHERE
12	THEY'RE ISOGENIC TO EACH OTHER EXCEPT THAT ONE
13	NONCODING SNP. THE GG CELLS WHEN THEY WERE INDUCED
14	INTO NEURONS SHOWED REDUCED FURIN EXPRESSION. OVER
15	THE TIME IT TOOK HER TO DO THE EDIT, IT WAS ACTUALLY
16	SHOWN THAT THIS SNP, RS4702, WAS IN A BINDING SITE
17	FOR MIR338. AND WHEN SHE ELIMINATED MIR338 ACTIVITY
18	THROUGH AN INHIBITOR, SHE ELIMINATED THE REGULATORY
19	EFFECT OF THIS SNP. NOW THIS MAKES SENSE. WITHOUT
20	MIR338 BINDING, IT CAN'T REGULATE THE EXPRESSION OF
21	FURIN. AND SO THIS BECOMES NOW A CONTEXT-SPECIFIC
22	REGULATORY ELEMENT WHERE ONLY IN THOSE CELL TYPES
23	THAT MIR338 EXPRESSED WOULD RS4702 BE PREDICTED TO
24	INFLUENCE YOUR RISK FOR SCHIZOPHRENIA.
25	NADINE TOOK IT FURTHER. SHE WAS ABLE TO
	56

1	SHOW THAT GG NEURONS WITH THEIR REDUCED FURIN
2	EXPRESSION HAD A REDUCED NEURITE OUTGROWTH
3	CONSISTENT WITH FURIN KNOCKOUT MICE AND ALTERED
4	PATTERNS OF NEURONAL ACTIVITY.
5	BUT, AGAIN, THIS IS JUST ONE SNP IN
6	ISOLATION. AND WE REALLY WANTED TO KNOW WHAT WOULD
7	HAPPEN IF WE MANIPULATED MORE RISK GENES AT THE SAME
8	TIME. AND SO WE PRIORITIZED AGAIN BY INTERSECTING
9	GWAS AND BRAIN EXPRESSION, AND WE ENDED UP WITH A
10	SLIGHTLY LONGER LIST OF FOUR GENES: FURIN, NRX2,
11	SNAP91, AND T-SNARE. WE ARE USING CRISPR A AND
12	CRISPR I TO ACTIVATE AND INHIBIT EXPRESSION OF THESE
13	GENES. AND SO HERE YOU CAN SEE THAT THE MOST
14	PERTURBED GENE IS THE GENE WE ARE TARGETING. THOSE
15	OTHER GENES CHANGING DOWNSTREAM, AND THOSE
16	DOWNSTREAM GENES, THEY DON'T SEEM TO BE OFF-TARGET
17	EFFECTS BECAUSE THEY'RE SPECIFICALLY IMPACTING
18	SYNAPTIC FUNCTION. AND, IN FACT, IF WE MANIPULATE
19	SNAP91, WE CAN SEE RECIPROCAL EFFECT BY
20	ELECTROPHYSIOLOGY LOOKING AT THE FREQUENCY OF
21	SYNAPTIC ACTIVITY. SO INCREASING SNAP91, INCREASING
22	SYNAPTIC ACTIVITY, DECREASING IT DECREASES SYNAPTIC
23	ACTIVITY. BUT, AGAIN, ONE GENE AT A TIME. THAT WAS
24	NOT THE GOAL. WE WANTED TO KNOW HOW THESE RISK
25	VARIANTS INTERACT.

57

1	SO HERE NADINE HAS TAKEN THESE FOUR GENES,
2	DONE WITH SINGLE GENE PERTURBATIONS FOLLOWED BY
3	RNASEQ, GENERATED COMPUTATIONALLY AND EXPECTED
4	ADDITIVE MODEL COMBINING THE RNASEQ, AND THEN ASKING
5	EXPERIMENTALLY HOW GOOD THE MODEL WAS COMPARED TO
6	THE PREDICTION. AND IT TURNED OUT THE MODEL WAS
7	PRETTY GOOD. GENOMEWIDE ABOUT 82 PERCENT OF GENES
8	ARE ACCURATELY PREDICTED BY THE EXPECTED ADDITIVE
9	MODEL, BUT 7 PERCENT OF GENES ARE MORE DOWN THAN
10	EXPECTED. THEY WERE ENRICHED FOR NEUROTRANSMITTER
11	GENES, AND 11 PERCENT OF GENES WERE MORE UP THAN
12	EXPECTED, MIR ENRICHED FOR THE RARE AND COMMON
13	VARIANTS LIKE SCHIZOPHRENIA AND BIPOLAR. AND SO
14	REALLY THIS IS HINTING AN EMERGENT BIOLOGY THAT YOU
15	CAN ONLY DETECT WHEN YOU MANIPULATE GENES IN
16	COMBINATION THAT YOU CANNOT PREDICT BY ADDING UP THE
17	EFFECTS OF SINGLE-GENE PERTURBATIONS.
18	WE WANTED TO VALIDATE THIS ACROSS A LARGER
19	NUMBER OF GENES, SPECIFICALLY CONSIDERING PATHWAY
20	BIOLOGY. SO USING AN UPDATED GENETICS STUDY AND AN
21	UPDATED POSTMORTEM BRAIN STUDY, WE WERE ABLE TO NOW
22	FILTER TO THE TOP FIVE GENES THAT ARE SYNAPTIC IN
23	FUNCTION, THE TOP FIVE EPIGENETIC, THE REGULATORY
24	GENES, BECAUSE THESE ARE THE TWO MAJOR FUNCTIONS
25	LINKED TO SCHIZOPHRENIA RISK, AND THEN THE TOP FIVE

58

1	GENES THAT WERE NOT SYNAPTIC, NOT REGULATORY, AND
2	NOT RELATED TO EACH OTHER.
3	AND MICHAEL WAS NOW ABLE TO SHOW THAT HE
4	COULD SEE THE SYNERGY IN THE SYNAPTIC SET, IN THE
5	REGULATORY SET, BUT NOT IN THE MULTIPATHWAY SET. SO
6	SYNERGY SEEMED TO BE DEPENDENT ON THE GENES HAVING A
7	SHARED BIOLOGY. AND THIS SHARED BIOLOGY ACTUALLY
8	REFLECTED THE CONVERGENT DOWNSTREAM TARGETS OF THE
9	INDIVIDUAL FIVE GENES IN EACH CLUSTER. SO WE SAW
10	STRONG OVERLAP OF CONVERGENT GENES AND SYNERGY GENES
11	AND SYNAPTIC AND REGULATORY AND NOT AT ALL IN THE
12	MULTIFUNCTION.
13	THIS IDEA, I THINK, IS REALLY COOL AND IT
14	GETS TO THIS UNIQUELY HUMAN ELEMENT OF COMPLEX
15	GENETIC DISORDERS. SO IF WE'VE GOT, FOR EXAMPLE,
16	TEN GENES IN THIS MODEL THAT IN ISOLATION HAVE THESE
17	SMALL EFFECTS, YOU MIGHT PREDICT AN EXPECTED
18	ADDITIVE MODEL THAT JUST SUMS THESE EFFECTS. BUT IF
19	YOU DO THE EXPERIMENT, YOU MIGHT SEE SOMETHING LESS.
20	AND WHAT WE ARE BEGINNING TO SEE NOW IS THAT IF YOU
21	LOOK AT THE SHARED IMPACTS DOWNSTREAM OF THESE
22	SINGLE-GENE PERTURBATIONS, YOU CAN USE THOSE TO
23	EXPLAIN THE DIFFERENCE BETWEEN THE EXPECTED AND THE
24	OBSERVED COMBINATORIAL EFFECTS.
25	AND WHY IS THIS IDEA OF CONVERGENCE SO
	59

1	IMPORTANT? WELL, WE ARE INCREASINGLY SEEING IT
2	ACROSS BRAIN DISORDERS. SO THERE'S A HUGE AMOUNT OF
3	CONVERGENCE IN THE VARIANTS LINKED TO SCHIZOPHRENIA
4	AND BIPOLAR. THIS HAS BEEN KNOWN FOR A DECADE NOW.
5	BUT AS THE GENETICS STUDIES GET LARGER, WE CAN ALSO
6	SEE CONVERGENCE ACROSS ANXIETY, PTSD, AND
7	DEPRESSION. AND WE CAN SEE THIS ACROSS THE
8	NEURODEGENERATIVE DISORDERS.
9	BUT THEN MORE RECENTLY, WE ARE ALSO
10	BEGINNING TO SEE CONVERGENCE ACROSS PSYCHIATRIC AND
11	NEURODEGENERATIVE DISORDERS. SO YOU CAN SEE HERE
12	SOME RICH GENES LINKED TO SCHIZOPHRENIA THAT ARE
13	ALSO LINKED TO PARKINSON'S, RISK GENES LINKED TO
14	BIPOLAR THAT ARE ALSO LINKED TO ALZHEIMER'S. AND
15	YOU CAN LOOK AT THE PATHWAY LEVEL. AND VERY FEW
16	GENES ARE BOTH YELLOW AND PINK. I THINK IT'S THE
17	CONNECTION BETWEEN THESE PSYCHIATRIC DISORDER GENES
18	AROUND HOW THE NEURODEGENERATIVE DISORDER GENES IS
19	REALLY STRIKING AND I THINK SHOULD ENCOURAGE YOU TO
20	REALIZE THAT THIS HUGE GROUP OF NEURODEGENERATIVE
21	RESEARCHERS THAT YOU ALREADY HAVE IN CALIFORNIA
22	SHOULD BE ABLE TO HELP EXPAND INTO PSYCHIATRIC
23	DISORDERS WITH A LITTLE BIT OF INCENTIVE.
24	AND SO THE OVERARCHING IDEA THAT I WANT TO
25	SHARE IS THAT, YES, WE KNOW THAT GENOTYPES REGULATE
	60

1	PHENOTYPES, BUT IT'S NEVER THAT SIMPLE. THE
2	ENVIRONMENT THAT YOU LIVE IN CAN MAKE A PHENOTYPE
3	WORSE. SO LIVING IN A STRESSED ENVIRONMENT, AN
4	ENVIRONMENT THAT CAUSED A LOT OF INFLAMMATION HAS
5	MORE PENETRANCE. WHEREAS, THE ASSUMPTION IS THERE
6	ARE LIKEWISE PRO, GOOD ENVIRONMENTS THAT MIGHT
7	AMELIORATE IT. IT COULD BE A DRUG. IT COULD BE
8	JUST AN UNSTRESSED ENVIRONMENT THAT ALLOWS YOU TO
9	ACHIEVE YOUR GENETIC MAXIMUM TOWARDS THIS
10	IDEA THIS WILL BE MY LAST DATA SLIDE, I THINK.
11	I'VE WORKED WITH RACHEL YEHUDA, THE NEW YORK STEM
12	CELL FOUNDATION, TO LOOK AT THE IMPACT OF STRESS ON
13	GENE EXPRESSION.
14	AND SO HERE WE HAVE STEM CELLS FROM 39
14 15	AND SO HERE WE HAVE STEM CELLS FROM 39 DONORS. WE'VE STRESSED THEM WITH A LOW DOSE OF THE
14 15 16	AND SO HERE WE HAVE STEM CELLS FROM 39 DONORS. WE'VE STRESSED THEM WITH A LOW DOSE OF THE STRESS HORMONE HYDROCORTISOL AND A HIGH DOSE. AND
14 15 16 17	AND SO HERE WE HAVE STEM CELLS FROM 39 DONORS. WE'VE STRESSED THEM WITH A LOW DOSE OF THE STRESS HORMONE HYDROCORTISOL AND A HIGH DOSE. AND WHAT I THINK IS PRETTY OBVIOUS TO EVERYBODY IS THAT
14 15 16 17 18	AND SO HERE WE HAVE STEM CELLS FROM 39 DONORS. WE'VE STRESSED THEM WITH A LOW DOSE OF THE STRESS HORMONE HYDROCORTISOL AND A HIGH DOSE. AND WHAT I THINK IS PRETTY OBVIOUS TO EVERYBODY IS THAT THERE'S MORE BLUE, THERE'S MORE CHANGES IN GENE
14 15 16 17 18 19	AND SO HERE WE HAVE STEM CELLS FROM 39 DONORS. WE'VE STRESSED THEM WITH A LOW DOSE OF THE STRESS HORMONE HYDROCORTISOL AND A HIGH DOSE. AND WHAT I THINK IS PRETTY OBVIOUS TO EVERYBODY IS THAT THERE'S MORE BLUE, THERE'S MORE CHANGES IN GENE EXPRESSION WHEN YOU STRESS NEURONS MORE. IF,
14 15 16 17 18 19 20	AND SO HERE WE HAVE STEM CELLS FROM 39 DONORS. WE'VE STRESSED THEM WITH A LOW DOSE OF THE STRESS HORMONE HYDROCORTISOL AND A HIGH DOSE. AND WHAT I THINK IS PRETTY OBVIOUS TO EVERYBODY IS THAT THERE'S MORE BLUE, THERE'S MORE CHANGES IN GENE EXPRESSION WHEN YOU STRESS NEURONS MORE. IF, HOWEVER, YOU BREAK THOSE 39 DONORS THEY WERE ALL
14 15 16 17 18 19 20 21	AND SO HERE WE HAVE STEM CELLS FROM 39 DONORS. WE'VE STRESSED THEM WITH A LOW DOSE OF THE STRESS HORMONE HYDROCORTISOL AND A HIGH DOSE. AND WHAT I THINK IS PRETTY OBVIOUS TO EVERYBODY IS THAT THERE'S MORE BLUE, THERE'S MORE CHANGES IN GENE EXPRESSION WHEN YOU STRESS NEURONS MORE. IF, HOWEVER, YOU BREAK THOSE 39 DONORS THEY WERE ALL COMBAT EXPOSED VETERANS, BY THE WAY INTO THE 19
14 15 16 17 18 19 20 21 22	AND SO HERE WE HAVE STEM CELLS FROM 39 DONORS. WE'VE STRESSED THEM WITH A LOW DOSE OF THE STRESS HORMONE HYDROCORTISOL AND A HIGH DOSE. AND WHAT I THINK IS PRETTY OBVIOUS TO EVERYBODY IS THAT THERE'S MORE BLUE, THERE'S MORE CHANGES IN GENE EXPRESSION WHEN YOU STRESS NEURONS MORE. IF, HOWEVER, YOU BREAK THOSE 39 DONORS THEY WERE ALL COMBAT EXPOSED VETERANS, BY THE WAY INTO THE 19 WHO HAD PTSD AND THE 20 WHO DID NOT. WHAT YOU CAN
14 15 16 17 18 19 20 21 22 23	AND SO HERE WE HAVE STEM CELLS FROM 39 DONORS. WE'VE STRESSED THEM WITH A LOW DOSE OF THE STRESS HORMONE HYDROCORTISOL AND A HIGH DOSE. AND WHAT I THINK IS PRETTY OBVIOUS TO EVERYBODY IS THAT THERE'S MORE BLUE, THERE'S MORE CHANGES IN GENE EXPRESSION WHEN YOU STRESS NEURONS MORE. IF, HOWEVER, YOU BREAK THOSE 39 DONORS THEY WERE ALL COMBAT EXPOSED VETERANS, BY THE WAY INTO THE 19 WHO HAD PTSD AND THE 20 WHO DID NOT. WHAT YOU CAN NOW SEE IS THAT THE PTSD-SPECIFIC DIFFERENCES
14 15 16 17 18 19 20 21 22 23 23 24	AND SO HERE WE HAVE STEM CELLS FROM 39 DONORS. WE'VE STRESSED THEM WITH A LOW DOSE OF THE STRESS HORMONE HYDROCORTISOL AND A HIGH DOSE. AND WHAT I THINK IS PRETTY OBVIOUS TO EVERYBODY IS THAT THERE'S MORE BLUE, THERE'S MORE CHANGES IN GENE EXPRESSION WHEN YOU STRESS NEURONS MORE. IF, HOWEVER, YOU BREAK THOSE 39 DONORS THEY WERE ALL COMBAT EXPOSED VETERANS, BY THE WAY INTO THE 19 WHO HAD PTSD AND THE 20 WHO DID NOT. WHAT YOU CAN NOW SEE IS THAT THE PTSD-SPECIFIC DIFFERENCES OCCURRED HERE AT THE LOW DOSE, WHICH IS TO SAY THE
14 15 16 17 18 19 20 21 22 23 24 25	AND SO HERE WE HAVE STEM CELLS FROM 39 DONORS. WE'VE STRESSED THEM WITH A LOW DOSE OF THE STRESS HORMONE HYDROCORTISOL AND A HIGH DOSE. AND WHAT I THINK IS PRETTY OBVIOUS TO EVERYBODY IS THAT THERE'S MORE BLUE, THERE'S MORE CHANGES IN GENE EXPRESSION WHEN YOU STRESS NEURONS MORE. IF, HOWEVER, YOU BREAK THOSE 39 DONORS THEY WERE ALL COMBAT EXPOSED VETERANS, BY THE WAY INTO THE 19 WHO HAD PTSD AND THE 20 WHO DID NOT. WHAT YOU CAN NOW SEE IS THAT THE PTSD-SPECIFIC DIFFERENCES OCCURRED HERE AT THE LOW DOSE, WHICH IS TO SAY THE NEURON FROM INDIVIDUALS WITH PTSD WERE HYPER STRESS

61

1	RESPONSIVE. THEY WERE MORE LIKELY TO RESPOND TO
2	STRESS AT LOW DOSE THAN THOSE FROM CONTROLS.
3	YOU CAN USE THAT LOW DOSE STRESS RESPONSE
4	TO PREDICT WHO HAD PTSD AND WHO DID NOT. AND THE
5	TYPES OF GENES THAT WERE DIFFERENTIALLY EXPRESSED IN
6	THE PTSD NEURONS IN LOW STRESS CONDITIONS ARE
7	ACTUALLY ENRICHED, NOT JUST FOR THE PTSD RISK GENES,
8	BUT ALSO FROM POSTMORTEM SIGNATURES. BUT THEY'RE
9	NOT SPECIFIC TO PTSD. YOU CAN SEE HERE WE ALSO HAVE
10	A LOT OF AUTISM AND SCHIZOPHRENIA GENES. AGAIN,
11	SUGGESTING THAT STRESS NONSPECIFICALLY INCREASES
12	YOUR RISK FOR PSYCHIATRIC DISORDERS. AND SO IT ADDS
13	TO THE RISK THAT YOU WERE BORN WITH.
14	AND SO MY LAB IS JUST SO INTERESTED IN
15	THESE GENE-GENE AND GENE-ENVIRONMENT INTERACTIONS
16	TRYING TO UNDERSTAND GENETIC RESILIENCE. HOW DO WE
17	ALLOW PEOPLE TO ACHIEVE THEIR GENETIC BEST TO
18	MINIMIZE THE IMPACT AND THE INTERACTIONS BETWEEN
19	THEIR RISK GENES AND RISK ENVIRONMENTS?
20	AND SO TO ANSWER LARRY'S QUESTIONS, I
21	THINK IT REALLY IS TIME TO TALK ABOUT DISCUSSION OF
22	WHICH DISORDERS TO PRIORITIZE IN COMING BACK TO THIS
23	IDEA OF CONVERGENCE, THAT I THINK WE CAN PRIORITIZE
24	ALL OF THEM.
25	CELL TYPES TO STUDY? I THINK THIS HAS TO
	62
	52

1	BE BASED ON THE GENETICS WHETHER THEY STUDY COMMON
2	OR RARE VARIANTS AND POWER LIMITATIONS. AND SO WITH
3	THAT, I'M REALLY HAPPY TO STOP SHARING AND TO TALK
4	ABOUT THESE QUESTIONS WITH YOU.
5	CHAIRMAN GOLDSTEIN: KRISTEN, THANK YOU.
6	LOVELY STUFF. REALLY THOUGHT PROVOKING. I'LL
7	LAUNCH THE FIRST QUESTION AS PEOPLE THINK THROUGH
8	WHAT THEY WANT TO KNOW ABOUT.
9	I GUESS THE QUESTION REALLY DOES BECOME
10	WHAT IS THE DEGREE OF RELATIONSHIP BETWEEN SOMETHING
11	THAT WE WOULD CALL, OH, THAT'S A NEURODEGENERATIVE
12	DISORDER VERSUS SOMETHING LIKE SCHIZOPHRENIA WHERE
13	YOU SAY, OH, THAT HAS NOTHING TO DO WITH
14	NEURODEGENERATION. THAT'S JUST THE PSYCHIATRIC
15	DISORDER. YOU AND ACTUALLY TOM HAVE BOTH RAISED THE
16	POSSIBILITY THAT THESE DISORDERS ARE ENORMOUSLY
17	OVERLAPPING. AND I GUESS THE QUESTION THAT IS MAYBE
18	A SLIGHTLY MORE PRECISE WAY OF ASKING WHAT I'D LIKE
19	TO KNOW IS WHAT REALLY IS THE EXTENT OF OVERLAP
20	BETWEEN THOSE TWO BROAD CLASSES?
21	DR. BRENNAND: I THINK EVEN FIVE YEARS AGO
22	PEOPLE WOULD HAVE SAID THERE WASN'T ONE. YOU HAD TO
23	HAVE A HUGE AMOUNT OF GENETIC KNOWLEDGE TO BE ABLE
24	TO BEGIN TO SEE IT. THERE WAS A STUDY IN SCIENCE, I
25	THINK, IN 2018 SAYING THERE WAS NO OVERLAP BETWEEN

1	NEURODEGENERATION AND PSYCHIATRIC DISORDERS AT THE
2	GENETIC RISK LEVEL. AND THERE'S BEEN TWO IN THE
3	LAST SIX MONTHS SAYING THERE IS. AND SO I THINK
4	THAT THE ISSUE IS THAT THE GENETICS ARE SO COMPLEX.
5	IT'S NOT THAT THERE'S THREE ALZHEIMER'S GENES AND
6	THERE'S FIVE SCHIZOPHRENIA GENES AND EITHER THEY
7	OVERLAP OR THEY DON'T. AND IT IS THAT PEOPLE ARE
8	REALLY COMPLEX. AND SO AT THE LEVEL OF EVEN THESE
9	NONCODING COMMON VARIANTS AND RARE VARIANTS, IT'S
10	VERY RARE EVEN IN SCHIZOPHRENIA TO HAVE THE COMMON
11	VARIANT TARGETS DIRECTLY OVERLAP WITH THE RARE
12	VARIANT TARGETS. AND THAT CAN SEEM REALLY
13	INCONSISTENT AND REALLY HARD TO WRAP YOUR HEAD
14	AROUND UNTIL YOU PAUSE AND THINK ABOUT THE FACT THAT
15	A COMMON VARIANT MIGHT BE CHANGING EXPRESSION IN THE
16	BRAIN BY 5 OR 10 PERCENT. AND A RARE VARIANT IS 50
17	PERCENT. AND YOU HAVE TO SURVIVE DEVELOPMENT TO BE
18	A PERSON.
19	SO THERE'S A HUGE SELECTIVE PRESSURE. AND
20	WHILE OUR ASSUMPTION, I THINK, IS THAT THESE RARE
21	VARIANTS ARE THE MORE IMPORTANT DISEASE GENES, WE
22	SURVIVE WITH THOSE MISSING HALF THE DOSE. AND SO
23	THESE COMMON VARIANTS THAT I THINK GOT DISMISSED FOR

A LONG TIME BECAUSE THEIR EFFECT SIZES WERE SO SMALL
MIGHT ACTUALLY HINT AT SOME OF THE FUNDAMENTAL

64

1	BIOLOGY BECAUSE WE TOLERATE VERY SMALL CHANGES
2	THERE. AND SO I THINK UNDERSTANDING THAT EVERY CELL
3	TYPE MIGHT HAVE DIFFERENT RISK VARIANTS OR THAT
4	IMPACT DIFFERENT GENES AT DIFFERENT STAGES OF
5	DEVELOPMENT AND IN DIFFERENT CELL TYPES. LIKE THE
6	SAME RISK GENE MIGHT IMPACT GLUTAMINURGIC NEURONS TO
7	CAUSE SCHIZOPHRENIA AND ASTROCYTES TO CAUSE
8	ALZHEIMER'S. IT REALLY DEPENDS ON THE CELL TYPE
9	SPECIFIC AND CONTEXT DEPENDENT REGULATORY ACTIVITY
10	OF THESE NONCODING SNPS. IT'S BECAUSE BIOLOGY IS
11	LAZY AND REUSES ALL THESE VARIANTS I THINK IS WHY
12	THE ANSWER IS SO HARD.
13	CHAIRMAN GOLDSTEIN: INTERESTING
14	STATEMENT. BIOLOGY IS LAZY. YES. IT REUSES THINGS
15	IMMENSELY.
16	DR. BRENNAND: OR INEFFICIENT OR I DON'T
17	KNOW.
18	CHAIRMAN GOLDSTEIN: I MEAN I GUESS THE
19	OTHER FACTOR IS WE TEND TO THINK OF, FOR EXAMPLE,
20	LETHAL MUTATIONS ARE ONLY ELIMINATED FROM
21	POPULATIONS WHEN THEY'RE HOMOZYGOUS. AND THAT'S
22	ACTUALLY JUST NOT TRUE. DICK LEWINGTON ARGUED A
23	LONG TIME AGO VERY EFFECTIVELY THAT WHEN YOU HAVE
24	DISORDERS SORRY WHEN YOU HAVE MUTATIONS
25	PRESENT IN HETEROZYGOUS CONDITION, THE EFFECT ON
	65

1	NATURAL SELECTION AND THE VIABILITY IN THE
2	POPULATION IS, IN FACT, OVER EVOLUTIONARY TIME, AT
3	LEAST, VERY SUBSTANTIAL. AND WHEN YOU COMBINE THAT
4	WITH THE BIG SURPRISE OF THE LAST 20 YEARS WHICH IS
5	THAT THE NUMBER OF HUMAN GENES IS FAR SMALLER THAN
6	WE EXPECTED, OF COURSE, THEY'RE REUSED IN MULTIPLE
7	TISSUES, ORGANS, AND HAVE AN IMPACT ON DIFFERENT
8	DISORDERS. AMAZING CONCEPT YOU'VE RAISED THERE.
9	PAT.
10	DR. LEVITT: HI, KRISTEN. THAT WAS GREAT.
11	AND ACTUALLY THE LAST THING YOU SAID WAS A PART OF
12	WHAT I WAS GOING TO ADDRESS IS THAT THERE ARE
13	GENES ARE NOT DISEASE GENES PER SE, LIKE THEY DON'T
14	EXIST TO CAUSE DISEASE. THEY EXIST TO ENCODE
15	PROTEINS TO PERFORM FUNCTIONS FOR THE ORGANISM,
16	RIGHT. AND SO THE INCREASING AMOUNT OF DATA NOW
17	SHOWING THAT GENES THAT HAVE BEEN ASSOCIATED WITH
18	NEURODEGENERATION CLEARLY PLAY A ROLE IN
19	DEVELOPMENT. RIGHT. THE LATEST WAS THIS PAPER THAT
20	CAME OUT IN SCIENCE ON HUNTINGTON'S DISEASE IN A
21	MOUSE MODEL IN WHICH THEY WERE ABLE TO TREAT WITH A
22	GLUTAMATE RECEPTOR STIMULATOR AGONIST FOR JUST A
23	SHORT PERIOD OF TIME IN DEVELOPMENT AND CAUSED MAJOR
24	INCREASES IN LIFE SPAN IN THOSE MICE FROM JUST A
25	SEVEN-DAY DEVELOPMENTAL TREATMENT.

66

1	SO THE QUESTION I HAVE IS, GIVEN WHAT YOU
2	JUST SAID, WHICH IS A CORE BELIEF SYSTEM THAT I'VE
3	HAD FOR A LONG PERIOD OF TIME, THAT EVERYTHING IS
4	DEVELOPMENTAL ANYWAY, WHAT CAN YOU TELL US ABOUT HOW
5	STEM CELLS CAN BE USED DIFFERENTLY TO TRY TO
6	UNDERSTAND THE INTERACTIONS THAT YOU DISCUSSED WHICH
7	MAY BE OVERLAPPING BUT NOT IDENTICAL TO CAUSE A
8	PSYCHIATRIC DISORDER THAT EMERGES, LET'S SAY, IN
9	ADOLESCENTS AND A DISORDER OF CELL SURVIVAL OR
10	DEGENERATION WHICH MAY OCCUR DECADES LATER? WHAT'S
11	YOUR TAKE ON HOW STEM CELLS CAN BE USED TO TRY TO
12	DIFFERENTIATE THOSE FROM A MECHANISTIC PERSPECTIVE?
13	DR. BRENNAND: I THINK WE FEEL LIKE THE
14	GENETICISTS HAVE DONE AN AMAZING JOB AT CATALOGING
15	LISTS OF VARIANTS AND GENES. AND SO WE HAVE THIS
16	WEALTH OF INFORMATION ACROSS MOST DISEASES THAT I
17	WOULD ARGUE WE FAILED TO TURN INTO CLINICAL
18	PRACTICE. IT'S HARD TO ANNOTATE NONCOMMON
19	VARIANT NONCODING VARIANTS ESPECIALLY IF THEY'RE
20	GOING TO HAVE DIFFERENT EFFECTS IN DIFFERENT DONORS
21	AND CELL TYPES AND CONTEXT. AND SO I THINK THAT
22	STEM CELLS REPRESENT THIS PLACE TO TEST HYPOTHESIS
23	AND LEARN ABOUT HOW TO INTERPRET NONCODING VARIANTS.
24	AND SO WHAT I MEAN BY THAT IS THAT I DON'T THINK WE
25	ARE EVER GOING TO FIND ONE CURE FOR ALZHEIMER'S OR

67

1	ONE CURE FOR AUTISM, MUCH LIKE THERE'S NOT GOING TO
2	BE ONE CURE FOR CANCER. BUT WE ARE GOING TO FIND A
3	LOT OF TREATMENTS THAT WORK IN SOME PEOPLE.
4	AND SO YOU ARE GOING TO CHIP AWAY I'VE
5	HAD PEOPLE ASK, LIKE, HOW LONG ARE WE GOING TO HAVE
6	TO KEEP SEQUENCING PEOPLE WITH DISEASES? AND I SAY,
7	WELL, HONESTLY, TILL WE HAVE ONE TREATMENT THAT
8	WORKS DEPENDENT ON IT. AND THEN THE PHARMA
9	COMPANIES WILL DO ALL THE SEQUENCING FOR US, RIGHT.
10	LIKE WE JUST NEED THAT FIRST PIZZA SLICE. AND WE
11	ARE THERE WITH CANCER. WE HAVE A LOT OF THE PIZZA
12	SLICES. RIGHT. WE DON'T UNDERSTAND EVERYTHING
13	ABOUT CANCER, BUT THERE ARE A LOT OF MUTATIONS NOW
14	THAT IF THIS, THEN THAT DRUG. IF THESE TWO, THEN
15	THIS OTHER DRUG GETS ADDED IN.
16	AND I THINK WE NEED TO BEGIN TO START, FOR
17	LACK OF A MORE TECHNICAL WORD, BUCKETING PEOPLE.
18	WHO BELONGS TOGETHER? AND IT TURNS OUT IT'S
19	PROBABLY NOT BY CLINICAL PRESENTATION. WE'VE
20	BUCKETED PEOPLE INTO NEURODEGENERATION AND PSYCH BY
21	PHENOTYPES. WE'VE BUCKETED THEM INTO SCHIZOPHRENIA
22	AND AUTISM BY CLINICAL PRESENTATION. BUT IF YOU
23	HAVE A NRXN1 DELETION AND YOU HAVE AUTISM OR
24	SCHIZOPHRENIA, ARE YOU LESS ALIKE THAN TWO
25	SCHIZOPHRENIA PATIENTS OR TWO AUTISM PATIENTS? AND

68

1	I WOULD ARGUE THAT UNDERSTANDING THESE COMMON
2	VARIANT BUCKETS IS JUST AS IMPORTANT AS
3	UNDERSTANDING THAT RARE VARIANT BUCKET.
4	DR. LEVITT: THANK YOU.
5	CHAIRMAN GOLDSTEIN: THE OTHER RELEVANT
6	BIT IS THAT IT HAS BEEN RECOGNIZED FOR SOME TIME AND
7	NOBODY HAS BEEN QUITE SURE WHAT TO DO WITH IT, THAT
8	THE NEURODEGENERATIVES OFTEN HAVE PSYCHIATRIC
9	PHENOTYPES. HYPERACTIVITY THAT LOOKS IN SOME WAYS
10	LIKE THE MANIA IN BIPOLAR DISORDER. AND, IN FACT,
11	IT'S IN SOME WAYS IT'S AN EASIER TREATMENT
12	OPPORTUNITY THAN THE DEGENERATION BECAUSE MEASURING
13	COGNITIVE DECLINE OR ARREST OF COGNITIVE DECLINE
14	WITH A DRUG CANDIDATE OVER A PERIOD OF YEARS VERSUS
15	DEVELOPING A DRUG THAT HELPS WITH THE BEHAVIORAL
16	PROBLEMS IN ALZHEIMER'S AND PARKINSON'S I DON'T
17	KNOW IF FRED KNOWS WHAT IT IS WHETHER THERE'S
18	SOMETHING LIKE THIS IN ALS OR NOT THOSE ARE MUCH
19	MORE STRAIGHTFORWARD TREATMENT OPPORTUNITIES THAT
20	ACTUALLY WOULD BE VERY HELPFUL TO CAREGIVERS WHO
21	HAVE TO MANAGE PEOPLE WITH THESE TERRIBLE DISORDERS.
22	SO, FRED, DO YOU KNOW? ARE THERE
23	BEHAVIORAL CHANGES IN ALS PATIENTS THAT ARE BEYOND
24	JUST THE SORT OF OBVIOUS DEPRESSION THAT COMES FROM
25	HAVING A DISORDER LIKE THAT?

69

1	DR. FISHER: A HUNDRED PERCENT. THE SAME
2	GENE THAT CAUSES ALS CAUSES FRONTAL TEMPORAL
3	DEMENTIA. SO YES. IT'S ESTIMATED THAT AS HIGH AS
4	30 PERCENT OF THE PATIENT POPULATION WITH ALS
5	DEVELOP SOME KIND OF COGNITIVE DISORDER, WHICH IS
6	WHY IT'S IMPORTANT TO TALK ABOUT TREATMENT OPTIONS
7	AND END-OF-LIFE OPTIONS VERY EARLY ON WHILE PEOPLE
8	STILL HAVE THE ABILITY TO PARTICIPATE IN THOSE
9	DECISIONS.
10	CHAIRMAN GOLDSTEIN: YEAH. GREAT POINT.
11	OKAY. OTHER QUESTIONS FOR KRISTEN BEFORE WE WRAP UP
12	THIS PART OF THE MEETING? GOING ONCE, TWICE.
13	KRISTEN, THANK YOU VERY MUCH FOR YOUR TIME TODAY.
14	VERY ILLUMINATING. AND I THINK THE COMBINATION WITH
15	TOM REALLY GAVE US A GREAT WAY TO START THINKING
16	ABOUT THESE DISORDERS IN A SOMEWHAT DIFFERENT WAY.
17	DR. BRENNAND: IT WAS SO MUCH FUN. AND
18	I'M HAPPY TO COME BACK ANY TIME.
19	CHAIRMAN GOLDSTEIN: OKAY.
20	DR. BRENNAND: THANK YOU.
21	CHAIRMAN GOLDSTEIN: YOU'LL BE COMING BACK
22	INTO CALIFORNIA.
23	DR. BRENNAND: ASK ME ANY YEAR IN JANUARY.
24	CHAIRMAN GOLDSTEIN: GOT IT.
25	DR. BRENNAND: BYE.
	70

1	CHAIRMAN GOLDSTEIN: OKAY. SO THE LAST
2	PART OF TODAY'S MEETING, IF I'VE GOT THIS
3	RIGHT WELL, OTHER THAN PUBLIC COMMENT, WHICH I
4	SEEM TO BE IN THE HABIT OF FORGETTING, THE LAST
5	ISSUE WE WANT TO TALK ABOUT IS SOMETHING THAT ROSA
6	HAS BROUGHT UP, WHICH IS THE VALUE OF A SURVEY IN
7	CALIFORNIA OF POTENTIAL GRANTEES. THIS MAY ALSO
8	HELP US THINK ABOUT THE QUESTION THAT FRED RAISED,
9	WHICH IS WHY IS THERE SUCH A PAUCITY OF
10	NEUROPSYCHIATRIC PROGRAMS WITHIN THE CIRM PORTFOLIO.
11	SO, ROSA, IF YOU ARE READY, I'LL TURN THE
12	MIC OVER TO YOU TO TALK ABOUT SURVEYS.
13	DR. CANET-AVILES: THANK YOU, LARRY.
14	MARIANNE, DO YOU HAVE THOSE TWO SLIDES?
15	MS. DEQUINA-VILLABLANCA: YES, I DO.
16	DR. CANET-AVILES: THANK YOU, LARRY. AND
17	THIS WAS ALIGNED WITH WHAT YOU INTRODUCED US WITH
18	AROUND DEVELOPING A BETTER UNDERSTANDING OF WHAT THE
19	COMMUNITY IN CALIFORNIA LOOKS LIKE AND WHAT DO WE
20	THINK THAT WE ARE MORE PRIMED FOR. AND THIS IS ALSO
21	IN REFERENCE TO STEVE JUELSGAARD'S QUESTION ABOUT
22	THAT.
23	THERE WAS SOMETHING ELSE THAT I WANTED TO
24	MENTION, AND AS STEVE MENTIONED, WHY DON'T WE HAVE
25	AN INVESTMENT SO FAR IN THE RFA NEUROPSYCHIATRY?
	71

1	AND I THINK THAT WAS ALIGNED IF YOU CAN GO TO NO.
2	3, SLIDE NO. 3. I JUST WANTED TO MENTION THAT THE
3	FIRST PRESENTATION I PRESENTED TO THE TASK FORCE DID
4	AN ANALYSIS OF WHAT KIND OF DISEASE MECHANISMS WORK
5	HAVE WE FUNDED SO FAR. ONE OF THE THINGS THAT CIRM
6	HAD NOT DONE WAS WE DID NOT FOCUS ON WORK AROUND
7	DISEASE MECHANISMS. SO WE DID NOT ASK FOR THESE
8	SPECIFICALLY IN OUR PROGRAM ANNOUNCEMENTS.
9	SO THIS IS WHAT WE ARE CHANGING HERE.
10	THIS IS WHAT WE WILL BE PROPOSING, AND THIS IS
11	ALIGNED WITH WHAT DR. SUDHOF AND DR. BRENNAND JUST
12	PRESENTED.
13	SO WITHOUT FURTHER ADO, THE SURVEY IS TO
14	GATHER INPUT FROM MEMBERS OF THE CALIFORNIA
15	SCIENTIFIC COMMUNITY TO ENSURE THAT THE PROGRAM
16	DESIGN WILL LEAD TO PHYSICAL MULTIDISCIPLINARY
17	RESEARCH PROJECTS WITH THE HIGHEST IMPACT AROUND
18	FOUNDATIONAL RESEARCH TO ACCELERATE THE DEVELOPMENT
19	OF THERAPIES FOR NEUROPSYCHIATRIC DISORDERS. AND AS
20	WE WERE JUST MENTIONING, THERE ARE ALSO COMPONENTS,
21	NEUROPSYCHIATRIC COMPONENTS, IN OTHER CNS DISEASES
22	LIKE ALZHEIMER'S, ALS, AND OTHERS.
23	SO THE DISCUSSION OBJECTIVE OF THE NEXT
24	SLIDE IS NOT TO DISCUSS ANSWERING THE QUESTIONS, BUT
25	TO GATHER FEEDBACK FROM THE TASK FORCE AROUND THE
	72
1	DESIGN OF THE QUESTIONS TO ACHIEVE THE GOAL THAT WE
----	--
2	HAVE HERE. WE AT CIRM HAVE DONE AN ANALYSIS OF
3	POTENTIAL APPLICANTS. SO WE HAVE A LIST OF AROUND
4	240 RESEARCHERS IN THE STATE OF CALIFORNIA THAT HAVE
5	AT A TIME OR OTHER BEEN WORKING IN NEUROPSYCHIATRIC
6	DISORDERS AND SOME OF THEM ALSO HAVE BEEN WORKING
7	WITH STEM CELLS.
8	SO WITH THAT SAID, THE FIRST QUESTION, IF
9	YOU COULD MOVE TO THE NEXT SLIDE, MARIANNE, THE
10	FIRST ONE IS ALIGNED WITH WHAT WE HAVE BEEN
11	DISCUSSING IN THE LAST DISCUSSION AFTER KRISTEN'S
12	PRESENTATION. WHICH NEUROPSYCHIATRIC DISEASE AREAS
13	COULD BE MOST PRIME FOR DISEASE MECHANISM RESEARCH
14	WITH STEM CELL MODELS IN NEUROPSYCHIATRIC DISEASES
15	AND WHY? AND THIS COULD BE A MULTIPLE CHOICE TYPE
16	OF QUESTION THAT WE WOULD BE ASKING CALIFORNIA
17	RESEARCHERS.
18	AND THE GOAL OF THIS QUESTION COULD BE TO
19	FIGURE OUT WHETHER THERE IS WHAT'S THE LEVEL OF
20	INTEREST AND ALSO OF RESEARCHERS ALREADY WORKING IN
21	SOME OF THESE DISEASES. SO WE COULD ADD ADDICTION,
22	ANXIETY DISORDERS, INCLUDING PTSD, ATTENTION DEFICIT
23	HYPERACTIVITY DISORDER, AUTISM SPECTRUM DISORDERS,
24	INTELLECTUAL DISABILITY DISORDERS, BIPOLAR, EATING
25	DISORDERS, SCHIZOPHRENIA. SO THESE COULD BE

1	MULTIPLE CHOICE SO THAT WE MIGHT BE ABLE TO SEE
2	WHAT'S THE LANDSCAPE OF APPETITE AND OF THE REALITY.
3	SO I WILL STOP HERE TO SEE IF THERE IS
4	DISCUSSION, FEEDBACK ABOUT THESE QUESTIONS. I DON'T
5	KNOW, LARRY, YOU HAVE ANY INPUT ABOUT HOW DO YOU
6	WANT TO RUN THIS, IF YOU WANTED TO GO THROUGH ALL OF
7	THEM OR IF YOU WANTED TO STOP ONE BY ONE.
8	CHAIRMAN GOLDSTEIN: I THINK HITTING THEM
9	ONE BY ONE IS FINE, ROSA. I'LL KEEP AN EYE ON THE
10	TIME. AND IF IT LOOKS LIKE WE ARE TAKING TOO MUCH,
11	THEN I CAN MOVE US ALONG A BIT MORE QUICKLY.
12	DR. CANET-AVILES: OKAY.
13	CHAIRMAN GOLDSTEIN: I THINK, AS LONG AS
14	I'VE GOT THE MICROPHONE ON HERE, BASED ON WHAT WE'VE
15	JUST HEARD AND WHAT I'VE READ IN THE PAST, THE
16	QUESTION WOULD BE, IN MY MIND, IT SEEMS TO ME A VERY
17	STRONG ARGUMENT FOR STRATIFICATION OF OUR LEVEL OF
18	ATTENTION SHOULD BE RELATED TO THE MAGNITUDE OF THE
19	GENETIC CONTRIBUTION. IF YOU'RE DEALING WITH A
20	HUMAN DISORDER THAT IS PRIMARILY ENVIRONMENTAL,
21	WELL, THAT'S GOING TO BE PRETTY HARD TO MODEL IN
22	STEM CELLS AND ORGANOIDS AND THAT SORT OF
23	TECHNOLOGY. WHEREAS, SOMETHING LIKE SCHIZOPHRENIA
24	WHERE WE JUST HEARD A GREAT DEAL, NOT ONLY IS THERE
25	A VERY STRONG COMPONENT, THE GENETIC ARCHITECTURE IN

74

1	MEASURING RISK, BUT THEY ACTUALLY AFFECT THE
2	CHARACTER OF THE DISEASE, PSYCHIATRIC VERSUS
3	DEGENERATIVE, FROM ALLELES OF THE SAME GENE.
4	SO IT SEEMS TO ME YOU'D ALMOST WANT TO
5	CALL THE QUESTION OR WE WOULD BE INTERESTED IN
6	HEARING WHAT THE COMMUNITY HAS TO SAY. ARE THERE
7	STRONG ARGUMENTS FOR WORKING ON DISORDERS THAT ARE
8	PRIMARILY ENVIRONMENTAL IN STEM CELL MODELS AS
9	OPPOSED TO, IT SEEMS TO ME, A VERY STRONG ARGUMENT
10	THAT OUR RESEARCHERS ARE GOING TO COME BACK AND TELL
11	US IF THERE'S A STRONG GENETIC COMPONENT, THAT'S
12	WHAT YOU'RE TRAPPING IN THESE CELLS EITHER BY GENOME
13	CAPTURE OR BY CRISPR-INDUCED MUTATIONS. WE'RE GOING
14	TO HEAR THAT.
15	I'D LOVE TO KNOW IF THERE'S A STRONG
16	ARGUMENT COMING BACK FOR DISORDERS THAT ARE
17	PRIMARILY ENVIRONMENTAL.
18	DR. LEVITT: LARRY, I WOULD SAY THAT THE
19	TARGETS AND THE TREATMENTS ARE GOING TO BE BASED ON
20	THE STEM CELL BIOLOGY. THE PICTURE, I THINK, AS TOM
21	REALLY FOCUSED ON IS THAT THERE'S A FUNDAMENTAL
22	CHANGE IN HOW THE PRIMARY SOURCE OF INFORMATION
23	PROCESSING, THE SYNAPSE, IS FUNCTIONING. IT'S NOT
24	REFLECTED IN GENE EXPRESSION. IT'S CAUSED IN HIS
25	CASE HE USED GENETIC MODELS FOR THAT, AND THAT'S

75

1	PERFECTLY FINE. BUT IT'S CLEAR THAT ENVIRONMENTAL
2	CONTRIBUTIONS CAN END UP DRIVING THE SAME CHAIN
3	BIOLOGICALLY, AND THAT'S THE TARGET FOR
4	THERAPEUTICS.
5	I'M NOT SUGGESTING THAT AN IPS CELL
6	DERIVED FROM SOMEBODY WHO HAS DEPRESSION AND
7	DEPRESSION IS RELATIVELY LOW ON THE SCALE IN TERMS
8	OF HERITABILITY COMPARED TO OTHER PSYCHIATRIC
9	DISORDERS; BUT, NONETHELESS, THE CELLS THAT ARE
10	DERIVED FROM AN INDIVIDUAL WITH MONOPOLAR DEPRESSION
11	MIGHT BE QUITE INFORMATIVE IN TERMS OF UNDERSTANDING
12	WHAT THE CHANGES ARE IN TERMS OF HOW THAT NEURON
13	FUNCTIONS, WHICH WE CAN'T GET FROM A MOUSE.
14	SO TO ME THE FIRST QUESTION IS WHETHER,
15	FOR ME IT'S A FINE QUESTION AND THE DESIGN IS
16	GREAT. DO WE WANT TO SAY MOST PRIMED OR PRIMED?
17	SOMETIMES WHEN YOU SAY MOST PRIMED, YOU GET ANSWERS
18	BACK FROM INDIVIDUALS WHO ARE FOCUSING ON WHAT THEY
19	FEEL IS THE MOST PRIMED. IF YOU USE THE BROADER
20	TERM LIKE PRIMED, THEY MIGHT BE MORE INCLUSIVE OF
21	MENTIONING OTHERS THAT THEY MAY NOT BE FOCUSING ON
22	RIGHT AWAY.
23	I THINK THE FIRST QUESTION IS OBVIOUSLY A
24	VERY IMPORTANT ONE FROM OUR PERSPECTIVE.
25	DR. CANET-AVILES: THANK YOU, PAT. AND
	76

1	ALSO ONE THING TO TAKE INTO ACCOUNT IS IN GENERAL
2	MOST PROJECTS WITH HIGH HERITABILITY AND INCIDENCE
3	OF THE NUMBER OF MUTATIONS ARE THE ONES THAT WILL
4	LEAD TO MORE SUCCESSFUL PROJECTS IN GENERAL. AND WE
5	NEED TO TAKE INTO ACCOUNT THAT THIS HERITABILITY IS
6	MAINTAINED IN THE CELLS AFTER RECOMBINING AS WELL
7	AND DIFFERENTIATION. SO THAT SHOULD BE ALSO
8	SOMETHING TO TAKE INTO ACCOUNT.
9	DR. LEVITT: YEAH.
10	CHAIRMAN GOLDSTEIN: THE OTHER ISSUE THAT
11	I DON'T KNOW THAT WE'VE YET I DON'T KNOW THAT
12	WE'VE YET CAPTURED IN THE QUESTIONS HERE AND THAT
13	WE'VE SEEN IS TO WHAT EXTENT ARE DIFFERENT
14	NEURODEGENERATIVE OR NEUROCOGNITIVE DISORDERS
15	ENRICHED IN THE DIFFERENT TYPES OF ENVIRONMENTS WE
16	HAVE IN CALIFORNIA. SO UNDERSERVED COMMUNITIES HAVE
17	ONE SET OF PRESSURES THAT THEY HAVE TO DEAL WITH IN
18	THEIR LIVES. WEALTHIER COMMUNITIES, I GUESS, HAVE
19	SOMEWHAT DIFFERENT PROBLEMS. AND IF WE ARE THINKING
20	ABOUT ENVIRONMENTAL STRESSORS, FOR EXAMPLE, EXPOSURE
21	TO LARGE AMOUNTS OF VINYL CHLORIDE BECAUSE YOU LIVE
22	NEAR RAILROAD TRACKS, IS THERE SOME WAY OF CAPTURING
23	THAT IN RESEARCH AREAS THAT OUR COMMUNITIES THINK
24	ARE ACTUALLY TRACTABLE PROBLEMS?
25	DR. LEVITT: SO I DON'T WANT TO HOG THE
	77
	//

1	CONVERSATION, BUT I THINK ONE OF THE REALLY
2	IMPORTANT THINGS THAT I DIDN'T QUITE GET A SENSE OF,
3	BUT YOU GET IT FROM READING PAPERS IS THE DEPTH AT
4	WHICH AND JONATHAN SABBAT TALKED ABOUT THIS
5	THE DEPTH OF INFORMATION YOU GET FROM THOSE PATIENTS
6	FROM WHOM YOU'RE OBTAINING PLURIPOTENTIAL STEM CELLS
7	TO DO YOUR WORK, THAT THAT INFORMATION IS REALLY
8	IMPORTANT, FOR ME ALMOST A REQUISITE, WHICH WOULD
9	ADDRESS, FOR EXAMPLE, LARRY, THE PATIENT COMES FROM
10	WHAT ZIP CODE. RIGHT? INFORMATION THAT'S HARDLY
11	EVER PROVIDED WHEN YOU GET THE SOURCES DON'T
12	PROVIDE A BUNCH OF INFORMATION.
13	SO I THINK EMPHASIZING DIVERSITY IN TERMS
14	OF THE ORIGINS OF THE EXPERIMENTAL CELLS AND WHAT WE
15	MEAN BY DIVERSITY, I THINK, WHICH INCLUDES ANCESTRY,
16	IT INCLUDES THE BUILT AND LIVED ENVIRONMENT, THOSE
17	SORTS OF THINGS. OBVIOUSLY IT'S VERY DIFFICULT TO
18	GET AN ENTIRE LIFE HISTORY, BUT I THINK IT'S
19	IMPORTANT TO EMPHASIZE THAT THE MORE INFORMATION WE
20	GET OR THAT THEY HAVE, THE BETTER THE STUDY IS GOING
21	TO BE IN TERMS OF BEING ABLE TO CORRELATE OUTCOMES
22	WITH FACTORS THAT MAY BE DRIVING IT.
23	CHAIRMAN GOLDSTEIN: IT'S A GREAT POINT.
24	BECAUSE FOR ALS, FOR EXAMPLE, THERE HAVE BEEN
25	ON-AND-OFF SUPPORT FOR THE IDEAS THAT ENVIRONMENTAL
	78

1	EXPOSURE IS A PRIMARY CAUSE VERSUS SOMEWHAT LOWER
2	DOWN. SO MAYBE THE SURVEY QUESTION WOULD BE WHAT
3	DOES THE USER COMMUNITY THINK IS THE RIGHT WAY TO
4	CAPTURE ENVIRONMENTAL INFORMATION IN CONTRIBUTIONS.
5	DR. LEVITT: YEAH. THERE'S OTHER FOR
6	EXAMPLE, PERINATAL COMPLICATIONS INCREASES RISK FOR
7	SCHIZOPHRENIA. IT'S THE MOST DRAMATIC NONGENETIC,
8	SO-CALLED NONGENETIC, CERTAINLY INHERITED FROM THE
9	OFFSPRING, LARGE GENETIC COMPONENT OF INCREASING
10	RISK. IT'S ENORMOUS. AND YET THAT KIND OF
11	INFORMATION MAY OR MAY NOT BE AVAILABLE IN A BANK
12	WHERE YOU MIGHT BE ABLE TO ACCESS STEM CELLS
13	FOR PLURIPOTENTIAL STEM CELLS FOR INDUCING
14	WHATEVER CELL TYPE YOU WANT TO STUDY.
15	AND SO THOSE ARE THE KINDS OF THINGS THAT
16	I THINK ARE REALLY HELPFUL BECAUSE NOT EVERYBODY
17	WITH SCHIZOPHRENIA EXPERIENCE PERINATAL
18	COMPLICATIONS. BUT THOSE WHO EXPERIENCE PERINATAL
19	COMPLICATIONS HAVE AN INCREASED RISK FOR PSYCHIATRIC
20	DISORDERS.
21	SO THIS IS THE KIND OF THING, NOT MAYBE
22	PART OF THE SURVEY QUESTIONS, BUT CERTAINLY IN TERMS
23	OF ANY KIND OF REQUEST FOR APPLICATION WHERE THE
24	DEPTH OF INFORMATION IS REALLY IMPORTANT.
25	ONE THING, ROSA, THAT I THOUGHT OF WHEN
	79

1	YOU SAY MULTIDISCIPLINARY TEAMS, WOULD YOU WANT
2	INFORMATION ON WHETHER PEOPLE ABOUT WHETHER
3	INVESTIGATORS FEEL IT WOULD BE MOST PRODUCTIVE TO
4	WORK AS PART OF A NETWORK, OR ARE WE TALKING ABOUT
5	PROMOTING INDEPENDENT, THE WAY THAT NIH MOSTLY DOES
6	IT EXCEPT IN BIG EFFORTS LIKE GENETICS OR IN BRAIN
7	IMAGING, ARE WE TALKING ABOUT NETWORKS THAT WE WOULD
8	SUPPORT OR INDIVIDUALS OR BOTH?
9	DR. CANET-AVILES: WE ARE TRYING TO DO A
10	COUPLE OF THINGS HERE WITH THIS. ONE IS TO CATALYZE
11	COLLABORATIVE EFFORTS BETWEEN DISCIPLINES THAT ARE
12	NOT PER SE WORKING CURRENTLY IN NEUROPSYCHIATRIC
13	DISORDERS. SO WE ARE TRYING TO BRING IN
14	COMPUTATIONAL BIOLOGIES WITH NEUROBIOLOGIES WITH
15	IMMUNOLOGISTS TOGETHER AND AT THE SAME TIME WITH
16	CLINICIANS, WHICH ULTIMATELY COULD HAVE THE
17	KNOWLEDGE OF THE CLINICAL ASPECTS OF THE DISEASE,
18	BUT ALSO ACCESS TO THE PATIENTS. SO WE ARE TRYING
19	TO CATALYZE THOSE MULTIDISCIPLINARY THREE TO FOUR,
20	LIKE THAT'S INITIALLY WHAT WE ARE THINKING, AND
21	THAT'S WHY WE WANT TO SEE WHAT PEOPLE ARE READY TO
22	OR INCENTIVIZED TOWARDS OR LOOKING FORWARD TO. SO
23	WE WOULD LIKE TO ASK THIS. SO HOPEFULLY THAT
24	ANSWERS YOUR QUESTION.
25	WE WANT TO KNOW WHAT DISCIPLINES ARE
	80

1	LACKING TO FURTHER OUR UNDERSTANDING OF FOUNDATIONAL
2	MECHANISMS OF THESE DISEASES.
3	CHAIRMAN GOLDSTEIN: GREAT POINT. FRED.
4	DR. FISHER: I REALLY FEEL LIKE I'M IN THE
5	WRONG GROUP. WHY DO WE NEED A SURVEY TO TELL THIS
6	INFORMATION WHEN APPARENTLY THERE ARE EXPERTS IN THE
7	FIELD THAT UNDERSTAND THE USE OF STEM CELLS IN
8	GENETICS IN THE EXPLORATION OF UNDERSTANDING
9	NEUROPSYCHIATRIC DISEASE? AND THOSE PEOPLE HAVE AN
10	OPEN INVITATION TO APPLY TO ANY NUMBER OF OUR
11	BUCKETS OF FUNDING. HERE I THINK I'M IN A WORK
12	GROUP THAT'S SUPPOSED TO BE LOOKING AT HOW TO DEPLOY
13	OR EVALUATE OUR DEPLOYMENT OF NEURO FUNDING. AND WE
14	ARE NOW CREATING A SURVEY TO ASK QUESTIONS THAT, IN
15	MY MIND, THAT THE PEOPLE REQUESTING THE FUNDING
16	SHOULD BE ABLE TO TELL US. I DON'T UNDERSTAND THE
17	PURPOSE OF THIS AT ALL.
18	SO THAT'S WHY I FEEL LIKE I'M COMPLETELY
19	LOST AND REALLY NOT UNDERSTANDING WHAT I'M DOING
20	HERE BECAUSE I KEEP BEING SURPRISED BY WHAT WE ARE
21	DOING.
22	DR. LEVITT: FRED, I'LL ANSWER THAT AS
23	SOMEBODY WHO'S BEEN WORKING IN THIS FIELD FOR A LONG
24	TIME. MANY SHIFT CHANGES IN EFFORTS THAT
25	INVESTIGATORS MAKE IS BASED ON, AND MOST OF OUR
	81

1	FUNDING COMES FROM THE NATIONAL INSTITUTES OF HEALTH
2	FOR THIS KIND OF RESEARCH, COMES FROM NATIONAL
3	INSTITUTES OF HEALTH WORKSHOPS THAT ARE RUN OR
4	SURVEYS THAT ARE GENERATED TO GET THIS KIND OF
5	INFORMATION AND THEN SCULPT REQUESTS FOR
6	APPLICATIONS THAT ADDRESS THE THOUGHT PROCESSES OF
7	INVESTIGATORS WHO MAY BE WORKING IN A CERTAIN AREA
8	THAT IS NOT PARTICULARLY RELEVANT TO USE OF STEM
9	CELLS, BUT MIGHT FIND A REQUEST FOR APPLICATION IN
10	THE EMPHASIS AREAS IN PARTICULAR SOMETHING THAT
11	ALIGNS WITH WHAT THEY FEEL THEY COULD ACCOMPLISH
12	WITH FUNDING.
13	IT DOESN'T NECESSARILY COME FROM THE
14	INVESTIGATOR INDEPENDENT OF THE FUNDING AGENCY IN
15	TERMS OF WHAT THE PRIORITIES ARE FOR THE FUNDING
16	AGENCY. THE NIH DOES THIS ALL THE TIME. THE
17	DEPARTMENT OF EDUCATION DOES IT ALL THE TIME. HRSA,
18	SAMHSA, ALL THESE FEDERAL AGENCIES OFTEN GET THIS
19	KIND OF INFORMATION BECAUSE THEY WANT TO TRY TO
20	ALIGN THEIR NEW INITIATIVES WITH WHAT INVESTIGATORS
21	MIGHT FEEL WOULD BE RELEVANT FOR THE KINDS OF
22	INCREASED ACTIVITY THAT THEY MAY NOT BE PURSUING AT
23	THE TIME.
24	THAT'S MY OWN BELIEF SYSTEM AND MY OWN
25	EXPERIENCE AS AN INVESTIGATOR. THAT'S WHAT I'VE
	82

1	EXPERIENCED FOR A LONG TIME. SO THIS IS PRETTY
2	USUAL, NOT UNUSUAL. AND ALSO FOUNDATIONS DO THIS AS
3	WELL. PRIVATE FOUNDATIONS OFTEN TRY TO UNDERSTAND
4	THE NATURE OF THE PLAYING FIELD IN TERMS OF THE
5	INVESTIGATORS. AND NOT DEVIATING FROM THEIR
6	MISSION, BUT TRYING TO ALIGN WHAT THEY ARE TRYING TO
7	SUPPORT AND DO IT IN A WAY THAT ALIGNS WITH HOW THEY
8	FEEL THEY CAN GET INVESTIGATORS TO SPEND MORE TIME
9	ON THEIR PARTICULAR GOALS, ON THE GOALS OF THE
10	FOUNDATION.
11	CHAIRMAN GOLDSTEIN: YEAH. I WOULD JUST
12	ADD TO THAT TWO POINTS, AND THEN WE SHOULD MOVE ON
13	TO THE NEXT QUESTION, I THINK. ONE IS THAT THE WAY
14	YOU WRITE AN RFA HAS A BIG IMPACT, AS I'M SURE
15	YOU'VE EXPERIENCED IN BEING HEAD OF YOUR
16	ORGANIZATION, FRED. HOW YOU WRITE THE RFA HAS A BIG
17	IMPACT ON WHAT SORTS OF GRANTS YOU GET BACK IN AND
18	WHAT SORTS OF PROPOSALS YOU GET TO SEE. AND IF YOU
19	WANT TO SEE A LOT OF MULTIDISCIPLINARY PROPOSALS,
20	YOU NEED TO STRUCTURE THINGS APPROPRIATELY IF YOU
21	THINK THAT'S THE MOST INTERESTING KIND OF
22	APPLICATION TO COME IN.
23	THE OTHER THING IS ACADEMIC INSTITUTIONS
24	MOSTLY ARE EXTREMELY SILOED. AND SO IF YOU DON'T
25	HAVE INCENTIVES TO TRY TO INCLUDE, FOR EXAMPLE,
	83

HIGHLY RIGOROUS, SOPHISTICATED STATISTICIANS IN THE
FACE OF A DISORDER THAT'S ENORMOUSLY VARIABLE LIKE
ALS, IT'S HARD TO MAKE SURE YOU'RE FINANCING THE
RIGHT KINDS OF INVESTIGATIONS.
BUT WE BETTER MOVE ON TO THE NEXT COUPLE
OF QUESTIONS. WE ONLY HAVE A FEW MINUTES LEFT,
ROSA.
DR. CANET-AVILES: YES. SO I THINK WE
TALKED A LITTLE BIT ABOUT THE MULTIDISCIPLINARY TEAM
ALREADY. SO UNLESS THERE IS ANY. AND THE NEXT ONE,
NO. 3, WOULD BE WHAT'S THE IDEAL SIZE OF A
MULTIDISCIPLINARY TEAM? THE GOAL HERE WAS
THINKING OUR THINKING RIGHT NOW IS THAT THREE TO
FOUR, NO MORE THAN THAT, BETWEEN STATISTICIAN,
COMPUTATIONAL BIOLOGIES, THE STEM CELL SCIENTISTS,
CLINICIANS, THAT SHOULD BE. BUT THEN IF WE SEE THAT
THE ANSWER IS LIKE MULTIDISCIPLINARY TEAMS OF SEVEN,
THAT WILL GIVE US A GUIDANCE TO INCLUDE UP TO SEVEN,
FOR EXAMPLE, IN THE PROGRAM ANNOUNCEMENT. THAT'S
WHAT THE IDEA OF THIS WAS.
I THINK AL HAS A COMMENT, LARRY.
MR. ROWLETT: SO, FIRST, I WANT TO SAY I
REALLY DO APPRECIATE YOUR COMMENTS, LARRY, ABOUT
ACADEMIC INSTITUTIONS BEING SILOED. THAT EXPLAINS
SOME OF THEIR ANSWERS TO THE QUESTIONS RELATED TO

1	DEI. BUT AS IT REFERENCES THE IDEAL SIZE, SO I
2	THOUGHT I WAS APPRECIATING, PAT, YOUR POINT WAS THAT
3	WE MIGHT ACTUALLY INVOLVE OR APPLYING ENTITIES MIGHT
4	ACTUALLY INVOLVE INDIVIDUALS WHO HAVE BEEN IMPACTED
5	BY NEUROPSYCHIATRIC DISORDERS AS A PART OF THEIR
6	MULTIDISCIPLINARY TEAM. AND I SAY THAT BECAUSE ON
7	THE SOCIAL SCIENCE SIDE, IT IS QUITE COMMON,
8	ESPECIALLY WHEN WE ARE APPLYING TO ENTITIES THAT
9	HAVE MORE OF A SOCIAL DETERMINANT FOCUS TO BE
10	REQUIRED TO INCLUDE PEOPLE WHO HAVE EXPERIENCED THE
11	DISORDER OR TO REALLY FOCUS ON ACTIVITIES IN
12	GEOGRAPHIC LOCATIONS WHERE THERE'S A
13	DISPROPORTIONATE CONCERNS OF SPECIFIC FACTORS THAT
14	LEAD TO WHAT WE ARE STUDYING, NEUROPSYCHIATRIC
15	SYMPTOMS.
16	SO IT'S COMMON FOR US, AND SO I'M A LITTLE
17	BIT CHALLENGED BY US PRESCRIBING AN IDEAL SIZE. IF
18	I'M UNDERSTANDING THE THOUGHT PROCESS IN THAT IT
19	WOULD BE UP TO THE APPLICANT TO DETERMINE THAT.
20	DR. CANET-AVILES: SO JUST TO CLARIFY, THE
21	TEAM, IT COULD BE THE RESEARCHERS. SO WE USUALLY
22	HAVE A TEAM THAT'S ONE PI, AND THEN THAT'S WHERE WE
23	ARE GEARING THE FUNDING. WHAT WE ARE THINKING ABOUT
24	HERE IS POTENTIALLY A PI WE HAVE TWO OR THREE
25	PI'S AT THE SAME LEVEL OF COMMITMENT AND

1	COLLABORATIVE EFFORT IN AN AWARD. THESE ARE GOING	
2	TO BE POTENTIALLY LARGE AWARDS TO ADVANCE THE	
3	FUNDAMENTAL UNDERSTANDING OF THESE DISEASES. SO	
4	THAT'S WHERE WE ARE GOING, AND THAT'S WHY WE ARE	
5	ASKING.	
6	MR. ROWLETT: SO THAT DOESN'T PROHIBIT	
7	OTHER INDIVIDUALS AS BEING A PART OF WHAT I	
8	TECHNICALLY DESCRIBE AS A MULTIDISCIPLINARY TEAM.	
9	AND, AGAIN, I HAVE A DIFFERENT PERSPECTIVE AROUND	
10	THIS, THAT WHAT YOU'RE DESCRIBING TO ME IS AN	
11	APPLICATION WHERE YOU WOULD ASK THE APPLICANT TO	
12	IDENTIFY MULTIPLE PI'S AS PART OF THE	
13	MULTIDISCIPLINARY TEAM.	
14	DR. CANET-AVILES: CORRECT. WE DON'T KNOW	
15	IF WE WILL BE ABLE TO CALL THEM PI'S BECAUSE THAT'S	
16	PER THE GRANT ADMINISTRATION POLICY. CO-PI'S DO NOT	
17	EXIST. SO WE MIGHT HAVE TO ASK THE BOARD TO ALLOW	
18	FOR THAT. BUT THAT'S WHERE WE WERE GOING. WE WANT	
19	TO HAVE A MULTITYPE OF PI EFFORT SO THAT PEOPLE FEEL	
20	RESPONSIBLE FOR DIFFERENT PARTS OF A VERY	
21	MULTIDISCIPLINARY EFFORT.	
22	DR. LEVITT: BUT I WOULD SAY I KNOW	
23	WE'RE GOING TO GO OVER TO ADDRESS AL'S COMMENT. AL,	
24	SO WHAT YOU DESCRIBE IS VERY COMMON IN CLINICAL	
25	RESEARCH PROJECTS, WHETHER THEY'RE DESCRIPTIVE OR	
	86	

1	WHETHER THEY'RE CLINICAL TRIALS. IT'S VERY, VERY	
2	COMMON TO BE INCLUSIVE. THAT WOULD INCLUDE	
3	COMMUNITY MEMBERS IMPACTED IN THE SPECIFIC AREA OF	
4	BIOMED MEDICAL RESEARCH THAT'S BEING DONE. IT'S	
5	VERY UNCOMMON IN WHAT WE WOULD DEFINE AS BASIC	
6	RESEARCH, BUT SOMETHING THAT I THINK WE SHOULD	
7	CONSIDER.	
8	WE DO WITH OUR RESEARCH INSTITUTE AND	
9	THERE'S A LOT OF BASIC STUDIES AND WE HAVE COMMUNITY	
10	MEMBERS WHO ARE INVOLVED AND THERE ARE FOUNDATIONS	
11	THAT DO THAT AS WELL. I THINK IT'S AN INTERESTING	
12	POINT TO BRING UP. BUT CERTAINLY IN TERMS OF	
13	CLINICAL RESEARCH, IT'S VERY COMMON TO DO EXACTLY	
14	WHAT YOU DISCUSS AND THEY'RE PART OF THE TEAM.	
15	MR. ROWLETT: THANK YOU, PAT.	
16	CHAIRMAN GOLDSTEIN: SO, LOOK, THIS IS A	
17	FASCINATING CONVERSATION THAT I DO THINK IS VERY	
18	USEFUL. BUT WE'VE HIT OUR TIME LIMIT FOR THE DAY.	
19	I DON'T WANT TO MESS UP ANYBODY ELSE'S CALENDAR.	
20	FOLKS	
21	DR. LEVITT: LARRY, CAN I JUST MAKE ONE	
22	SUGGESTION?	
23	CHAIRMAN GOLDSTEIN: SURE.	
24	DR. LEVITT: TO ALIGN THE TERM WE USE WITH	
25	OUR FUNDING, INSTEAD OF SAYING I JUST PUT THIS	
	87	

1	OUT THERE. INSTEAD OF BASIC RESEARCH, CAN WE SAY
2	DISCOVERY RESEARCH BECAUSE THAT'S WHAT OUR GRANTS
3	ARE CALLED AT THE MECHANISTIC LEVEL. THEY'RE
4	DISCOVERY RESEARCH, NOT TO BE CONFUSED WITH
5	BECAUSE THE INTERPRETATION OF BASIC RESEARCH MAY BE
6	SO FUNDAMENTAL AND NOT TRANSLATABLE INTO THE TRANS
7	GRANTS. THAT IS MY ONLY WORRY ABOUT THAT TERM.
8	DR. CANET-AVILES: WELL, THAT'S FINE.
9	THAT'S OKAY. YEAH. THAT'S OKAY. WE CAN SAY
10	DISCOVERY RESEARCH.
11	CHAIRMAN GOLDSTEIN: WE ARE PARTLY THERE.
12	DR. CANET-AVILES: IT'S DISCOVERY AND
13	VALIDATION TYPE OF RESEARCH, IDENTIFICATION,
14	DISCOVERY VALIDATION. SO THAT'S WHY WHERE WE ARE
15	GOING IS FUNDAMENTAL MECHANISTIC RESEARCH. WE ARE
16	KIND OF BEING A LITTLE BIT DIFFERENT FROM THE WAY
17	WE'VE BEEN THINKING ABOUT DISCOVERY. BUT THAT'S
18	FINE. THIS IS EARLY RESEARCH, BASIC DISCOVERY. WE
19	WILL CALL IT DISCOVERY SO IT ALIGNS WITH THE PILLAR
20	OF FUNDING.
21	CHAIRMAN GOLDSTEIN: SO, TASK FORCE
22	MEMBERS, YOU'VE ALL SEEN THE QUESTIONS. PLEASE
23	EMAIL ROSA WITH ANY OTHER QUESTIONS OR SUGGESTIONS
24	THAT YOU HAVE. WE WON'T GET THIS TO BE IDEAL, BUT
25	LET'S GO FOR BEST POSSIBLE.

88

1	DR. CANET-AVILES: THANK YOU, LARRY. WE	
2	WERE INTENDING TO SEND IT BY WEDNESDAY BECAUSE WE	
3	NEED THE CONCEPT TO FINALIZE FOR THE TASK FORCE	
4	MEETING ON THE 15TH OF MAY. SO WE WANT TO MAKE SURE	
5	THAT WE GATHER UP THE INPUT. THANK YOU, LARRY.	
6	CHAIRMAN GOLDSTEIN: SURE. SO EMAIL ROSA	
7	QUICKLY IF YOU HAVE ANY THOUGHTS.	
8	OKAY. SO THAT'S IT FOR TODAY. I THINK WE	
9	SHOULD WRAP UP. NEXT MEETING WILL INCLUDE TALKS BY	
10	DAN GESCHWIND AND LILY YESHQAVA (PHONETIC) PRIMARILY	
11	ON SINGLE-CELL METHODS OF ANALYSIS AND THE	
12	TECHNOLOGIES THAT ARE BEING DEVELOPED TO MAKE THAT	
13	POSSIBLE. IT'S A VERY IMPORTANT AREA THAT'S	
14	DEVELOPING. AND ROSA WILL HAVE A DETAILED CONCEPT	
15	PLAN FOR US TO TALK ABOUT AS WELL. SO IT WILL BE A	
16	LIVELY MEETING, UNLIKE ALL THE OTHERS WHICH HAVE	
17	BEEN SLOW. SO THANK YOU ALL FOR YOUR TIME.	
18	MS. DEQUINA-VILLABLANCA: LARRY.	
19	CHAIRMAN GOLDSTEIN: OH, PUBLIC COMMENT,	
20	RIGHT.	
21	MS. DEQUINA-VILLABLANCA: YES. AND THERE	
22	WAS TWO THAT WERE RECEIVED EARLIER IF I CAN READ	
23	THOSE REAL QUICKLY.	
24	CHAIRMAN GOLDSTEIN: GO FOR IT.	
25	MS. DEQUINA-VILLABLANCA: OKAY. GREAT.	
	80	
	03	

1	THIS ONE IS FROM DR. YE ZHANG FROM UCLA. "STUDYING	
2	THE BASIC BIOLOGY OF NEURAL STEM CELLS AND BASIC	
3	DEVELOPMENTAL NEUROBIOLOGY IS VITAL FOR	
4	UNDERSTANDING THE NEUROLOGICAL AND PSYCHIATRIC	
5	DISORDERS BECAUSE IT HELPS US UNLOCK POTENTIAL	
6	THERAPEUTIC TARGETS AND DEVELOP MORE EFFECTIVE	
7	TREATMENTS. BY UNDERSTANDING THE FULL MECHANISMS OF	
8	NEURAL STEM CELL BEHAVIOR, SUCH AS THEIR GENERATION,	
9	DIFFERENTIATION, AND DEPLETION, WE CAN GAIN INSIGHTS	
10	INTO A WIDE RANGE OF DISORDERS.	
11	"WHILE IT'S TRUE THAT INVESTIGATING	
12	NEUROLOGICAL AND PSYCHIATRIC DISEASES DIRECTLY CAN	
13	LEAD TO SHORT-TERM PROGRESS, WE ALSO NEED BASIC	
14	NEURAL STEM CELL AND NEURAL DEVELOPMENT RESEARCH TO	
15	BUILD A CONTINUOUS PIPELINE FOR NEW THERAPEUTIC	
16	TARGETS. BY UNDERSTANDING HOW NEURAL STEM CELLS	
17	RESPOND TO DIFFERENT SIGNALS DIFFERENTIATE INTO	
18	SPECIALIZED CELL TYPES AND CONTRIBUTE TO THE REPAIR	
19	AND REGENERATION OF DAMAGED TISSUES, WE CAN DEVELOP	
20	NOVEL THERAPIES TARGETING THE UNDERLYING CAUSE OF	
21	THESE DISEASES.	
22	"MOUSE MODELS HAVE BEEN INVALUABLE FOR	
23	STUDYING THE COMPLEX PROCESSES INVOLVED IN NEURAL	
24	STEM CELL BIOLOGY. THEY ALLOW US TO MANIPULATE	
25	SPECIFIC GENES OR TRUSTED ENVIRONMENTAL STRESSORS IN	
	90	

1	A CONTROLLED, REPRODUCIBLE MANNER. THIS PROVIDES	
2	INSIGHTS INTO HOW THESE FACTORS IMPACT NEURAL STEM	
3	CELL BEHAVIOR AND CONTRIBUTE TO THE DEVELOPMENT OF	
4	NEUROLOGICAL AND PSYCHIATRIC DISORDERS. MOUSE	
5	MODELS ALSO ENABLE US TO STUDY NEURAL STEM CELL	
6	TRANSPLANTATION AND THE POTENTIAL FOR CELL	
7	REPLACEMENT THERAPIES IN THE CONTEXT OF	
8	NEURODEGENERATIVE DISEASES.	
9	"INVESTING IN BASIC NEURAL STEM CELL	
10	RESEARCH, INCLUDING STUDIES USING MOUSE MODELS, IS	
11	AN EXCELLENT LONG-TERM STRATEGY. IT CAN PAVE THE	
12	WAY FOR MORE EFFECTIVE AND TARGETED TREATMENTS.	
13	IT'S ESSENTIAL THAT CIRM INVEST IN THE STUDY OF THE	
14	BASIC BIOLOGY OF NEURAL STEM CELLS AND BASIC	
15	DEVELOPMENTAL NEUROBIOLOGY, INCLUDING USING MOUSE	
16	MODELS, AS THIS KNOWLEDGE HAS THE POTENTIAL TO	
17	IMPROVE OUR APPROACH TO UNDERSTANDING AND TREATING A	
18	VAST ARRAY OF NEUROLOGICAL AND PSYCHIATRIC	
19	CONDITIONS."	
20	AND THEN THE LAST ONE IS FROM PAUL	
21	KNOEPFLER FROM UC DAVIS. "CEREBRAL PALSY OR CP IS A	
22	COMMON NEUROLOGICAL CONDITION PRESENT IN ABOUT THREE	
23	OUT OF THOUSAND CHILDREN, AND MORE THAN 750,000	
24	PEOPLE ARE LIVING WITH THIS CONDITION IN THE U.S.	
25	TODAY. CP GENERALLY RESULTS FROM BRAIN INJURY	

1	COULD HAVE DISPROPORTIONATELY LARGE POSITIVE IMPACT
2	MOVING FORWARD."
3	CHAIRMAN GOLDSTEIN: THANK YOU, MARIANNE.
4	OKAY. IS THERE ANYTHING ELSE I'VE MISSED BEFORE WE
5	ADJOURN HERE? OTHERWISE, WE ARE OUT OF THERE. HAVE
6	A GOOD EARLY MAY. TALK TO YOU SOON, GUYS. BYE.
7	(THE MEETING WAS THEN CONCLUDED AT 2:09 P.M.)
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
	93

REPORTER'S (CERTIFICATE
--------------	-------------

I, BETH C. DRAIN, A CERTIFIED SHORTHAND REPORTER IN AND FOR THE STATE OF CALIFORNIA, HEREBY CERTIFY THAT THE FOREGOING TRANSCRIPT OF THE VIRTUAL PROCEEDINGS BEFORE THE TASK FORCE ON NEUROSCIENCE AND MEDICINE OF THE INDEPENDENT CITIZEN'S OVERSIGHT COMMITTEE OF THE CALIFORNIA INSTITUTE FOR REGENERATIVE MEDICINE IN THE MATTER OF ITS REGULAR MEETING HELD ON APRIL 24, 2023, WAS HELD AS HEREIN APPEARS AND THAT THIS IS THE ORIGINAL TRANSCRIPT THEREOF AND THAT THE STATEMENTS THAT APPEAR IN THIS TRANSCRIPT WERE REPORTED STENOGRAPHICALLY BY ME AND TRANSCRIBED BY ME. I ALSO CERTIFY THAT THIS TRANSCRIPT IS A TRUE AND ACCURATE RECORD OF THE PROCEEDING.

BETH C. DRAIN, CSR 7152 133 HENNA COURT SANDPOINT, IDAHO (208) 920-3543

94